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ON OPTIMALITY CONDITIONS FOR ABSTRACT CONVEX
VECTOR OPTIMIZATION PROBLEMS

GUE MYUNG LEE AND KwaANG BAIK LEE

ABSTRACT. A sequential optimality condition characterizing the efficient
solution without any constraint qualification for an abstract convex vector
optimization problem is given in sequential forms using subdifferentials
and e-subdifferentials. Another sequential condition involving only the
subdifferentials, but at nearby points to the efficient solution for con-
straints, is also derived. Moreover, we present a proposition with a suf-
ficient condition for an efficient solution to be properly efficient, which
are a generalization of the well-known Isermann result for a linear vector
optimization problem. An example is given to illustrate the significance
of our main results. Also, we give an example showing that the proper
efficiency may not imply certain closeness assumption.

1. Introduction

Vector optimization problem consists of vector valued objective function and
the constrained set. There are three kinds of solutions for the problem, that
is, (properly, weakly) efficient solution. To get an optimality condition for an
efficient solution of a vector optimization problem, we often formulate an cor-
responding scalar problem. However, it is so difficult that such scalar program
satisfies a constraint qualification which we need to derive an optimality con-
dition. Hence it is very important to investigate an optimality condition for
an efficient solution of a vector optimization problem which holds without any
constraint qualification.

Recently Jeyakumar and Zaffaroni ([16]) established necessary and sufficient
dual conditions for weakly and properly efficient solutions of an abstract con-
vex vector optimization problems without any constraint qualifications. The
optimality conditions are given in asymptotic forms using epigraphs of con-
jugate functions and subdifferentials. Glover, Jayakumar and Rubinov ([6])
obtained necessary and sufficient dual conditions for efficient solutions of a
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finite-dimensional convex vector optimization problem without any constraint
qualification. Very recently, Jeyakumar, Lee and Dinh ([13]) gave sequential
optimality conditions characterizing the solution without any constraint qual-
ification for an abstract scalar convex optimization problem.

On the other hand, Isermann ([10]) showed that every efficient solution of
a linear vector optimization problem is properly efficient. Many authors ([2],
(3], [7], [8], [17]) have tried to get a sufficient condition to extend the Isermann
result to several kinds of vector optimization problems.

The aim of this paper is to present a sequential optimality condition char-
acterizing the efficient solution without any constraint qualification for an ab-
stract convex vector optimization problem, which is given in sequential forms
using subdifferentials and e-subdifferentials, and to get a sufficient condition to
extend the Isermann result to the problem.

This paper is organized as follows. In Section 2, definitions and preliminary
results are given for next sections. In Section 3, we obtain a sequential op-
timality condition characterizing the efficient solution without any constraint
qualification for an abstract convex vector optimization problem, and derive
another sequential condition involving only the subdifferentials, but at nearby
points to the efficient solution for constraints. Moreover, sequential conditions
characterizing a properly efficient solution and a weakly efficient solution with-
out any constraint qualification are given. In Section 4, we present a preposition
with a sufficient condition for an efficient solution to be properly efficient, which
are a generalization of the Isermann result. In Section 5, an example is given to
illustrate the significance of our main results. Also, we give an example showing
that the proper efficiency may not imply certain closeness assumption.

2. Preliminaries

Now we give notations and preliminary results that will be used later in
this chapter. Throughout the chapter, unless otherwise stated, X is a reflexive
Banach space, Y and Z are Banach spaces, and the cones K C Y, T C Z are
closed and convex. The continuous dual space to X will be denoted by X*
and will be endowed with the weak* topology. When a sequence {z}} in X*

converges to £* € X* in the weak* topology, we denote it as w*- lim z} = z*.
n—oo

The positive polar of the cone K C Y is the cone KT ={0 € Y* | 6(k) 2
0 Vk € K}, and the strict positive polar of the cone K is K™* = {f €
Y* | 0(k) >0 Vke K\{0}}.IfY = R" and K is closed and pointed, then
K%' # @ and K** = int K+ ([11]), where int K7 is the interior of the cone K.
The core of a subset D of Z is defined by coreD = {d € D : (Vz € Z)(Je >
0)(VA € [—¢,¢])d + Az € D}.

Definition 2.1. Let g : X — R U {400} be a proper lower-semicontinuous
convex function.
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(1) The conjugate function of g, g* : X* — R U {+00} is defined by
9" (v) = sup{v(z) - g(z) | = € domg},
where the domain of g, dom g, is given by
domg = {z € X | g(z) < +o0}.
(2) The epigraph of g, epig, is defined by
epig = {(z,7) € X xR | z € domg, g(x) <r}.

(3) The subdifferential of g at a € dom g is defined as the non-empty weak*
compact convex set

0g(a) = {ve X* | g(z) — g(a) > v(z — a), Yz € dom g}
and for € > 0, the e-subdifferential of g at a € dom g is defined as the non-empty
weak™ closed convex set
O.g(a) = {v e X* | g(z) — g(a) > v(z — a) — € Vz € dom g}.

See Hiriart-Urruty and Lamarechal [9] for a detailed discussion on the e-subdiff-
erential. Note that

() 8e9(a) = dg(a).
>0
If g is sublinear (i.e., convex and positively homogeneous of degree one), then
0.9(0) = 0g(0) for all e > 0. If g(z) = g(x) — k, z € X, k € R, then epi§* =
epi g*+(0, k). It is worth nothing that if g is sublinear, then epi g* = dg(0) xR+,
Moreover, if g is sublinear and if g(z) = g(z) — k, z € X, k € R, then
epig* = Jg(0) x [k, 00).

The following proposition describes the relationship between the epigraph of

a conjugate function and the e-subdifferential and plays a key role in proving
the main results.

Proposition 2.1. ([12]) If g : X — R U {40} is a proper lower semi-
continuous convex function and if a € domg, then

v T
epig*ZU{< v(a)+e—g(a)) €eX" xR : vE@eg(a)},

€20
where superscript T denotes the transpose.
The mapping g : X — Z is T-convex if for every u,v € X and every t € [0, 1]
it holds:
g(tu+ (1 —t)v) —tg(u) — (1 - t)g(v) € —-T.

For a continuous T-convex mapping g it is easy to show that the set |J
AT+
epi(Ag)* is a convex cone ([15]).
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Throughout this paper, we will consider the following abstract convex vector
optimization problem:

(ACVP) Minimize f(z)
subject to g(z) € —T,

where f : X — Y and g : X — Z are continuous K-convex and T-convex
functions respectively.
Let S={z € X | g(z) € —T'}. Then a € S is said to be an efficient solution
of (ACVP) if
[£(8) = f(a)] N (—K) = {0}.
We denote the set of all the efficient solutions of (ACVP) by Eff(ACVP).

The point a € S is called a properly efficient solution of (ACVP) if there
exists a convex cone K’ such that

K\{0}cintK’' and [f(S)~ fla)]Nn(=K')={0}.
We denote the set of all the properly efficient solutions of (ACVP) by
PrEff(ACVP).
The point a € S is said to be a weakly efficient solution of (ACVP) if
intK#0 and [f(S)— fla)]N(—int K) = 0.
We denote the set of all the weakly efficient solutions of (ACVP) by
WEff(ACVP).

It is clear that PrEff(ACVP) C Eff(ACVP) C WEff(ACVP).
By separation theorem ([11]), we can obtain the following proposition:

Proposition 2.2. ([16]) If in (ACVP) the mapping f: X - Y andg: X —
Z are K-convex and T-convex, respectively, then

(i) a € PrEff(ACVP) if and only if there exists 0 € K+* such that
(0f)(a) = min{6f(z) | x € 5}.
(ii) a e WEff(ACVP) if and only if there exists § € KT\ {0} such that
(6f)(a) = min{6f(z) | z € 5}.
Extending the result of Corley ([4]), we can obtain the following proposition:

Proposition 2.3. Let § € K**. If in (ACVP) the mapping f : X — Y and
g:X — Z are K-convexr and T-convez respectively, then a € Eff(ACVP) if
and only if a is an optimal solution of the following scalar optimization problem:
(P)y Minimize 0f)(x)
subject to  g(z) € T
f(z) - fla) € K.
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Proof. Suppose that a ¢ Eff(ACVP). Then there exists z; € S such that
f(@1) = f(a) € —K \ {0}.
Since § € K1°,
(0f)(z1) — (8)(a) <O,
which implies that a is not an optimal solution of (P)s.

Conversely, suppose that a € Ef f(ACVP) and let = be any feasible solution
of (P)g. Then we have,
f(@) = f(a) € =K.

Since a € Eff(ACVP), f(z) = f(a). Hence a is an optimal solution of
P)e. O

The following lemmas are needed to prove the main results.
Lemma 2.1. ([13], [14]) Let T C Z be a closed convex cone, let u: X — R
be a continuous linear mapping, and let g : X — Z be a continuous T-convez

mapping. Suppose that the system g(z) € —T is consistent. Let a € R. Then
the following statements are equivalent:

() {zreX: g@)e-TIC{zxc X uz)<a}
.. u :
(ii) ( o | € cd (Uner+ epi(Ag)*).

We can obtain the following Lemma 2.2.

Lemma 2.2. Let f : X — R be a continuous convez function and g : X —
R U {+o00} be a proper lower semicontinuous convez function. Then

epi(f + )" =epi f* + epig”.
Lemma 2.3. ([1], [18]) Let f : X — RU {400} be a proper lower semicontin-

uous convex function. Then for any real number € > 0 and any z* € 0.f(Z)
there exist x. € X, z¥ € 0f(x.) such that

[ze — 2| < Ve,
||$: - SU*H < Ve and
|f(ze) — 25 (ze — ) — £(Z)| £ 2.

3. Optimality conditions

Now we give sequential optimality conditions for (properly, weakly) efficient
solutions of the abstract convex vector optimization problem (ACVP).
Theorem 3.1. Let 0 € K** and a € S. Then the following are equivalent:

(i) ac Eff(ACVP).
(ii) there exists u € O(0f)(a) such that

—( u(a) )Tecl U epidg) + U [epitef)” + 0, (uf)(@)]

AeT+ peK+
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(iii) there exist u € A(6f)(a), \n € TT, 6n 2 0, v, € 05,(Ang)(a), pin €
K*, €, 20, wy, € O, (unf)(a) such that

u+w*- lim (vp, +wy) =0, hm 6n= lim e, =0 and
lim (Ang)(a) =0.
Proof. a € Ef f(ACVP)
<= (by Proposition 2.2) a is an optimal solution of the problem (P):

(P) Minimize 0f)(z)
subject to  g(z) € =T
f(z) - fla) € -K.

<= there exists u € 9(8f)(a) such that Vx € Z := {r € X : g(x) € -T,
f(z) = f(a) € K}, u(z) Z u(a).

T

< thereexists u € (6f){(a) such that Vz with ( f(xf(—av)]”(a) ) € —(Tx
K), —u(z) £ —ula).

<= (by Lemma 2.1) there exists © € 3(6f)(a) such that

w T
_ < u(a) ) €l U epi(Ag + uf — pnf(a))*.

(w)ET+x K+
u \T
<= (by Lemma 2.2) there exists u € 9(6f)(a) such that — ( ) )

ccl (UAET‘*‘ epi(Ag)* + U,ueK+ [epi(#f)* + < (Nf)(a) )

u
a

T
€cl (Uxe:m U5>o{ v(a +5 A9)(a) ) | v € 05(\g)(a) }

T
+U,u€K+U>0{ w(a) +€—( Nf)()) wea(,uf)(a}

(w
( whi )

<= there exist u € 3(0f)(a), \p, € TT, 6, 0, vn € 0s5,(Mng)(a),
T

> _ u -
pn € K, €, 2 0, w, € O, (unf)(a) such that (u(a) )

<= (by Proposition 2.1) there exists u € (8 f)(a) such that — ( u
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fimp, o0 (( va(a) + 5: Z (m9)(a) )T

+( wn(a) + €n — (nf)(a) )T i ( (un?)(a) )T)

= (iii).

O

Theorem 3.2. Let0 € K*' anda € A. Then a € Ef f(ACVP) if and only if
there existu € d(0f)(a), An €T, pn € KT, 2, € X, $n € O(Ang+pinf)(2n)
such that

utw = lim s, =0, 1m [(Ang+pnf)(@n) — (4nf)(@)] =0 and

lim ||z, —a] =0.

n—

Proof. Let a € Ef f(ACVP). Then by Theorem 3.1, there exist u € 9(0f)(a),
A €T, 6,20, €, >0, u, € KT, v, € 85, (Mng)(a), wn, € O, (unf)(a) such
that

u+ w*- lim (v, +w,) =0
n—o0

lim 8, = lim €, =0
n—o0 n—o

lim (An,g)(a) =0.
Notice that it follows the definition of &, f that

0s., ()‘ng) (a) + 0, (an)(a) C O, (Ang + /"'nf)(a)a

where oy, = &, + €,. Without loss of generality, we may assume that oy, > 0.
Letting t, = vp +Wn, tn € Oa, (Ang + pnf)(a) and hence by Lemma 2.3, there
exists &n, € X, 8p € {Ang + pnf)(zs) such that

lzn —all < Von
[sn —tall £ Vor and
|(Ang + pinf)(@n) = sn(Tn — @) — Ang + pnf)(a)] £ 20n.

Since o, — 0 and s, (x, — a) — 0, we have

lim ||z, —al| =0
n—oo

u+w*- im s, =0 and
n—oo

im [(ng + nf) (@n) = (4nf)(@)] = 0.
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Conversely, suppose that there exist u € 8(0f)(a), A\, € Tt, un € K+,
Tn € X, 8 € 0(Ang + pnf)(xy) such that

v+ w*- lim s, =0,
n—oo

Jim [Ong +pnf)(en) = (unf)(@)] =0 and
Jim. |zn —al = 0.
Since s, € 0(Ang + pnf)(zn) we have
(Ang + pnf) (8n) = sn(Tn) — (Ang + pn ) ().

So,
(Sn,8n () = (Ang + pinf)(@n) + (bnf)(a))
€ epi()‘ng + ;Ufnf)* + (O’ (/"nf)(a))
Moreover, w*- nlirgo S$p = —u, and
Jim [5n(@n) = Ong + i f)(2n) + (4 ) (@)
= nll’ngo sn(:[,‘n) = —-u(a).
Thus

_< u(a) )Ted U (epi(,\g+uf)*+( (uf(;(a) )T)

AeTtH pek+

Thus by Lemma 2.2,

'( u(@) )T € ( U epidg)*+ U [epilun)” +( ‘(]ﬂ A )T]) .

AeTt uEK+

So, by Theorem 3.1, a € Ef f(ACVP). 0

By using Propositions 2.1 and 2.2, and following methods of proofs in The-
orems 3.1 and 3.2, we can obtain the following theorems.

Theorem 3.3. The following are equivalent:

(i) a € PrEff(ACVP).
(ii) there exist 6 € K%, uw € 9(6f)(a), €, 20, An € T, v, € e, (Ang)(a)
such that
u+ w*- lim v, =0,
lim (Ang)(a) =0 and

lim €, = 0.
n—o
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(iii) there exist § € K*, w € 9(0f)(a), €n 20, A\, € TH, 2, € X, v, €
O(Mng)(@n) such that

u+w*- lim v, = 0,
n—oo

lim A,g(z,) =0 and

n—xo

lim z, = a.
n—oe

Theorem 3.4. The following are equivalent:
(i) a e WEff(ACVP).
(ii) there exist 6 € K+ \ {0}, v € 8(0f)(a), €n 2 0, Ay € T, v, €
O, (Ang)(a) such that

u+ w*- lim v, =0,
n—oo

lim (M\.g)(a) =0 and

lim ¢, = 0.
(iii) there exist 6 € K+ \ {0}, u € 8(6f)(a), \p € T, zp € X, v, €
O(Ang)(xy) such that

u+w*- lim v, =0,
n—00

lim Ag(zn) =0 and
n—oo
lim z, = a.
n—0o0
Now we consider the closed cone constraint qualification which requires that

the convex cone |J epi(Ag)* is weak* closed. This constraint qualification
AEST

holds under the Robinson Regularity Condition, that is, 0 € core(g(X)+S9) (see
[16]) or the generalized Slater condition that int S is nonempty and 3z¢ € X
such that —g(z0) € int S (see [15]).

Following the proof in [13], we can obtain the following Kuhn-Tucker theo-
rems (the Lagrange multiplier theorems) for (ACVP) under the closed cone
constraint qualification.

Theorem 3.5. Let a € S and assume that the closed cone constraint qualifi-
cation holds. Then the following are equivalent:

(i) a € PrEff(ACVP).

(ii) there ezist @ € K™%, X € T such that

0 € 90(8f)(a) + d(Ag)(a) and (Ag)(a) =0.

Theorem 3.6. Let a € S and assume that the closed cone constraint qualifi-
cation holds. Then the following are equivalent:

(i) a e WEff(ACVP).



980 GUE MYUNG LEE AND KWANG BAIK LEE

(ii) there exist @ € K+, A € T such that
0 € 3(8f)(a) + 0(Ag)(a) and
(Ag)(a) = 0.

4. Generalization of Isermann’s result

The following proposition, which is a generalization of the Isermann’s result
([10], 5], [19]), gives a sufficient condition that an efficient solution can be
properly efficient.

Proposition 4.1. Let a € S and assume that
U epig) + | [epiCus)” + (0, (u£)(e))]
€Tt pueK+

is closed in X* x R. Then ifa € Eff(ACVP), a € PrEff(ACVP).

Proof. Let a € Ef f(ACVP) and # € K™°. Then by Lemma 2.2 and Theorem
3.1, there exists u € 3(6f)(a) such that

- ( u(a) )T € AETHW (epi()\g +uf) -+ ( ” f‘;(a) )T> .

Thus there exist A € Tt and u € KT such that

( —u(a)_—u.uf(a) )T € epihg +pf)°

and hence (Ag+uf)*(—u) £ —u(a)—pf(a). Thus for any z € X, —u(z)—(Ag+

wf)(z) £ —u(a)—pf(a). So,forany z € S, 0 < u(z)—ula)+(uf)(z)—(uf)(a).

Since u € 8(0f)(a), (8f)(x) — (8f)(a) 2 u(z — a) and we have, for any z € S,
0 = (6f)(=) - (05)(a) + (uf)(x) — (nf)(a)

(0 +p)f(x) — 0+ u)f(a).

Hence for any z € S, (0 + p)f(a) < (6 + p)f(z).

Since # € K™ and u € K*, 8 + u € K**. So, by Proposition 2.2, a €
PrEff(ACVP). 0

The following proposition is the well-known Isermann theorem ([10]) for a
linear vector optimization problem.

Proposition 4.2. Let X = R*, Y = R?, Z = R™, K = R, T = RT
f(x) = (a1, ..., cox) and g(z) = (@15 — b1, ..., amZ — by), where ¢; ER™, 1=
L...,pa;€R™ j=1....mandb; €R, j=1,...,m. Then

PrEff(ACVP) = Eff(ACVP).
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Proof. Let a € Ef f(ACVP). Then we have,
U epia) + |J [epi(uf)® + (0, (u)(@)]

AET+ ueEKT

~  cone co({( ol >T:i=1;...,p}U{( v >T1j=1,...,m}
)

Thus the above set is closed, and hence it follows from Theorem 4.1, a €
PrEff(ACVP). Since PrEff(ACVP) C Eff(ACVP),
PrEff(ACVP) = Eff(ACVP). O

5. Examples

Now we give an example to illustrate Theorems 3.1 and 3.2, and Theorem
4.1.

Example 5.1. Consider the following convex vector optimization problem:
(ACVP) Minimize f(z) = (x,z%)
subject to g(z):=2 0.

Let T =Rt and K = RJ. Then 0 € Ef f(ACVP),
but 0 ¢ PrEff(ACVP).

(1) We will show that the condition (ii) in Theorem 3.1 holds for (ACVP)
at @ = 0. We can check that

U i)+ U [epitu)” + (0, (u£)(0))]
AeT+ neK+
= {(¢,9) €R*:2<0, y>0}U{(z,y) €eR*:2 20, y 20}
Take 6 = (1,1). Then u := V(8f)(0) =1 and

~(5)# U enitor+ U [enitur) + 0. er0))]

AET+ neK+
But

() ecz{ U epitia)y + U [epitus)® + 0, (uf)(O))]}-

AT+ peK+
Thus the condition (ii) in Theorem 3.1 holds at @ = 0.

(2) We will show that the condition (iii) in Theorem 3.1. holds for (ACVP)
at a = 0. Take 8 = (1,1), \p = %, 8, = 1, pn = (0,3n), € = 5. Then

I 2n



982 GUE MYUNG LEE AND KWANG BAIK LEE

35, (Ang)(0) = {1}, and 8., (un f)(0) = [-1,1]. Let v,, = + 2 and w, = —1. Then
Up € 05, (A ng)(O) and w, € O, (pun f)(0). Moreover we have

V(Bf)(O) + nh_{%o(vn + 'wn) =0,

lim 6, = lim ¢, =0 and
n—oo n—oo

nlim (Ang)(0)=0
Thus the condition (iii) holds at a = 0.

(3) Now we will show that the conclus10n of Theorem 3.2 holds for (ACVP)
at a =0. Take 6 = (1,1), zn = -1, un = (0,3n), An =0. Then lim z, =0,

VRO + lim Vinf +hng)(an) = 1+ lim [2x g0 x (1)

= 0, nqoo
and
lim. [(#nf+>\ng)($n)—(unf)(0)] = JLH;OE”X <‘%)2]
= 0.

Hence the conclusion of Theorem 3.2 holds.

(4) We will show that if a > 0, —a € PrEff(ACVP). First we will prove
that if @ > 0, then there exists u € 8(0f)(—a) such that

-( u(ii) )T € ( U eripe) + U [epi(uf)* + (0, (uf)(—a))])

AeT+ pEKT

and U epi(Ag)* + U [epi(uf)” + (0, (uf)(~a))] is closed.
AETH ueK+
Indeed, let a > 0,

U [epitsH) +@.un )] = U [epituh)” + (0, —pma + uaa?)].

neK+ HeK+

(i) The case that p1 =20, uz =0
epi(uf)* + (0, ~p1a + p2a®) = {1} x [0, 00) + (0 —ma) = {m} x [~pa, 00)
(ii) The case that u3 =0, pa >0, ~p1a + pga® =0:

epi(uf)* +(0, —pra+ poa?) = epi(uf)* +(0,0) and (uf)*(v) = L’i,#— Notice
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that po = £ and L%j“ﬁ—)i 2 —av Vv € R. Hence

a

U [epi(uf)* +(0,—pa+ uzaQ)]
#120,u2=0

v U fenitan) + 0,0)]

p2>0,—p1a+puza?=0
= {(v,a) eR*: a2 —av}.
(iii) The case that py 2 0, up > 0, —u1a + pga® # 0 :

—o)? -
(uf*)(v) = (“2#2) and (”4521)2 — p1a + e + av = (v — p1 + 2u2a)? =

0 Vv € R. Hence gﬁ [epi(,uf)* + (0, (,uf)(—a))} ={(v,a) € R?: a Z —av}.
So,

U i)+ {J [epituf) + @ (uf)(-a)]

AeT+ uEK+
= {(x,y)eR?*:220, y 20} + {(x,y) e R : y > —az}
= {(z,y) € R*:y > —ax}

and hence this set is closed. Since (8f)(z) = = + 22, 3(0f)(—a) = {1 — 2a}.
Let u = 1 — 2a. Then

T
‘( uﬁa)) € ( U epita) + |J [epi(us) + (0, (uf)(—a))]).

AeT+ BEKT

Thus by Theorem 3.1, ~a € Eff(ACVP). Moreover, by Proposition 4.1,
—a € PrEff(ACVP).

We give an example to show that a € PrEff(ACVP) may not imply the
closeness assumption of Proposition 4.1.

Example 5.2. Let f(z) = (~z,—x) and g(z) = 0 if 250 Consider
ple 5.4 -’ g 22 if ©>0.
the following vector convex optimization problem:
(ACVP) Minimize flz)
subject to g(z) £0.

Then 0 € PrEff(ACVP).

U lepiluf)” + (0, (uf)(0))] = {(z.y) €R*: 2 £0, y 2 0}

2
HERT
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and

U epirg) + U [epituf)” + (0, (uf)(0))]

2
A20 HERE

={(zy):220, y2 0} H(=z.9) :2>0, y>0}.

Therefore |J epi(Ag)*+ U [epi(uf)* + (0, (pf)(O))] is not closed.
220 nERZ
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