DOI QR코드

DOI QR Code

COMPLEX MOMENT MATRICES VIA HALMOS-BRAM AND EMBRY CONDITIONS

  • Li, Chunji (INSTITUTE OF SYSTEM SCIENCE COLLEGE OF SCIENCES NORTHEASTERN UNIVERSITY) ;
  • Jung, Il-Bong (DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCES KYUNGPOOK NATIONAL UNIVERSITY) ;
  • Park, Sang-Soo (INSTITUTE OF MATHEMATICAL SCIENCE EWHA WOMANS UNIVERSITY)
  • Published : 2007.07.30

Abstract

By considering a bridge between Bram-Halmos and Embry characterizations for the subnormality of cyclic operators, we extend the Curto-Fialkow and Embry truncated complex moment problem, and solve the problem finding the finitely atomic representing measure ${\mu}$ such that ${\gamma}_{ij}={\int}\bar{z}^iz^jd{\mu},\;(0{\le}i+j{\le}2n,\;|i-j|{\le}n+s,\;0{\le}s{\le}n);$ the cases of s = n and s = 0 are induced by Bram-Halmos and Embry characterizations, respectively. The former is the Curto-Fialkow truncated complex moment problem and the latter is the Embry truncated complex moment problem.

Keywords

References

  1. R. Curto and L. Fialkow, Solution of the truncated complex moment problems for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52pp
  2. R. Curto and L. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Memoirs Amer. Math. Soc. 136 (1998), no. 648, x+56 pp
  3. R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), no. 2, 315-354
  4. M. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta. Sci. Math. (Szeged) 35 (1973), 61-64
  5. I. Jung, E. Ko, C. Li, and S. Park, Embry truncated complex moment problem, Linear Algebra Appl. 375 (2003), 95-114 https://doi.org/10.1016/S0024-3795(03)00617-7
  6. C. Li, The singular Embry quartic moment problem, Hokkaido Math. J. 34 (2005), no. 3, 655-666 https://doi.org/10.14492/hokmj/1285766290
  7. C. Li and S. Lee, The quartic moment problem, J. Korean Math. Soc. 42 (2005), no. 4, 723-747 https://doi.org/10.4134/JKMS.2005.42.4.723
  8. S. Wolfram, Mathematica, Version 3.0, Wolfram Research Inc., Champaign, IL, 1996

Cited by

  1. A Cyclic Subnormal Completion of Complex Data vol.54, pp.2, 2014, https://doi.org/10.5666/KMJ.2014.54.2.157
  2. ESTIMATING THE DOMAIN OF ATTRACTION VIA MOMENT MATRICES vol.46, pp.6, 2009, https://doi.org/10.4134/BKMS.2009.46.6.1237