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COMPLEX MOMENT MATRICES VIA HALMOS-BRAM AND
EMBRY CONDITIONS

CHuNJI L1, IL BONG JUNG, AND SANG S00 PARK

ABSTRACT. By considering a bridge between Bram-Halmos and Embry
characterizations for the subnormality of cyclic operators, we extend the
Curto-Fialkow and Embry truncated complex moment problem, and solve
the problem finding the finitely atomic representing measure p such that
vij = [ 2027dp, (0 < i+j < 2n, |i—j] < n+s,0 < 5 < n); the cases of s =
n and s = 0 are induced by Bram-Halmos and Embry characterizations,
respectively. The former is the Curto-Fialkow truncated complex moment
problem and the latter is the Embry truncated complex moment problem.

1. Introduction and preliminaries

In [5, Proposition 2.8], it was shown that Bram-Halmos characterization
for the subnormality of a cyclic operator on a complex Hilbert space induces a
moment matrix M (n) which was considered in [1] and [2]. As a parallel study, in
[5] they discussed a matrix E(n) corresponding to the Embry characterization
of such an operator. The moment matrices M(n) and E(n) are contained in
our new classes of moment matrices M(n,s), s = 0,1,...,n (which will be
defined below). Let

Chs={1;€C:0<1+5<2n, |i—j|<n+s, 0<s<n},
where vo0 > 0, 7;; =7;;. Notice that the data in I',, ; lie in the gray pentagon
in Figure 1.

The truncated complex moment problem for T', ; entails finding a positive
Borel measure y supported in the complex plane C such that

(1.1) Yij :/zizfdu, (0<i+j<2n, |i—jl <n+s).

And p is said to be a representing measure for I'y, 5. In particular, I'y », induces
the Curto-Fialkow moment matrix M(n) ({1], [2]); Tn,o induces the Embry
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moment matrix E(n) ([5]). If n = 2k, let
(n,5) = (k+1)*+2mk —m(m —1) if s = 2m,
ML=V (k+1)24@m—-1k—(m—-1)2  ifs=2m—1,
and if n = 2k + 1, let
(n,s) = (k+1)(k+3)+2mk —m(m — 1) if s=2m+1,
TS =Y k+1)(k+3)+ @m—-1Dk—(m—-1)2  if s=2m.
Let M (C) be the set of all k x k matrices. For A € M, 4(C), we introduce

the order on the rows and columns of A. For example, if n = 4 and s = 3, i.e,,
n(4,3) = 14, then the order is as follows:

1,2,Z,7% 22,2%,7%,22%, 7%2,23,2*, 273, 2% 2% Z3Z.
Let

A,y ={(6,5) : 0 < i+ j <n,max{i — 5,0} <j, 0<s<n}
and let P, ; be the set of polynomials p(z,z) = Z(z’,j)eA(n,s) a;;2'27, where
a;j € C. Then it is clear that P, s is a subspace of P,[z, Z], the vector space
of all complex polynomials in z,Z of total degree < n. Let {ei;}u j)enc..
be a basis for C"(™*) as follows: e;; = eg’("’s)) is the vector with 1 in the
Z'ZJ entry and 0 in all other positions. For p(z,2) = )R ey ai;Z'2d,
let p := Z(i’j)eA(n ,, @ij€ij- We define a sesquilinear form (,:)a on P, s by
(0,9)a = (AD,q) (p,q € Pns). In particular, (227,2%2'Y 4 = Agyi,z), for
(4,7) € Agn,s) and (k,1) € A(, 5). We define the moment matrix M(n,s) be
a n(n,s) x n(n,s) matrix that the entry in row Z*Z' and column Z*Z7 is
M(n,7) (k1) (5.5) = Viwi,jk, Where (k,1), (4, 7) € Ay, 5). (Observe that M(n,n) =
M(n) and M(n,0) = E(n) whose definitions are in [1] and [5], resp.) For
example, if n = 2,5 =1, i.e., for

Y : 7005 Y015 Y10, Y025 Y11, Y205 Y03, V12, Y215 Y30, Y13, Y22, Y31,
the associated moment matrix is

Yoo “Yor Yo Yoz Y1
Y10 Y11 Y20 Y12 721
M(2, 1) = Yor 7Yo2 Y11 "o3 Y12
Y20 Y21 Y30 Y22 Y81
Y11 Y12 Y2 Y13 Y22

In particular, M (2, s) is referred to the quartic moment matrix here.

The paper consists of five sections. In Section 2 we consider a bridge between
Bram-Halmos’ and Embry characterizations for cyclic subnormal operators,
which is related to complex moment matrices M(n,s). In Section 3, we prove
that if Iy, , is double flat (i.e., rank M(n, s) = rank M(n—2,s)) and M(n,s) >
0, then M(n,s) admits a unique flat extension of the form M(n + k,s) for
all k € N. And also we consider several useful examples. Let M(1,0) be any
positive quadratic moment matrix. Then it always has a flat extension M (1,1).
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FIGURE 1

But, in general the case of M(2,0) is independent to the case M(1,s). For
example, in Section 4 we show that there exists a moment matrix M(2,0)
with a representing measure g such that the number of atoms is different from
rank M(2,0). In addition, we discuss singular quartic moment matrix M (2, s)
and related examples. Finally, in Section 5 we obtain an algorithm finding a
moment measure from the nonsingular quartic moment matrix M (2,0) which
will be applied to M (2, s) by a similar method.

Some of the calculations in this article were obtained through computer
experiments using the software tool Mathematica [8].

2. A bridge between Bram-Halmos and Embry characterizations

Lemma 2.1. Let A := {v;;}{5_, be an infinite matriz of complez numbers.
Suppose n € N and 0 < s < n. Then the following assertions are equivalent :

(i) there ezists a linear functional A : Pz, z] — C defined by A(Z'27) = ;5
such that

ALY auE )20
(4,0)EA(n,5)
n,s) aijzizj € Pn,s;
Proof. (i) = (ii): Let p(z,2) = Y 6.d)eh sy a;;2'27. Then
Mpedf) = AL S ad Y ey
(kD€A. ) (4,3)EA(n,s)

— E : = i j+k
= QA A(z 2’ )
(kyl)a(l,J) eA(n,s)
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= § Ul Qi Yi+i,5+k
(k1l)1(i1j)€A(n,s)

= Z M(n, 8)(k,0,(i.5) Ok Qi
(kyl)y(iaj)eA(n,s)

= (M(n,s)p,p) > 0.
(ii) = (i): Define a linear functional A(z'27) = 7;; on P[z, z]. Let
p(z, 2) = Z aij;‘:izj.
(kvl)r(”:aj)eA(n,s)
Since M(n,s) > 0 for all n € N, the above computation shows that
Alp(z,2)*) > 0.

O

Theorem 2.2. Let T be an operator with a cyclic vector zo in H and let

Yij = (T** Tz, z0) for anyi,j € Ny := NU{0}. Supposen € N and 0 < s < n.

Then the following assertions are equivalent:
(i) for any pi(z) € P[2] with degp;(z) <n—i—max{i—s,0} (i =1,...,n),

Z (T*H-max{j—s,o}Tj-{—ma,x{i—-s,O}pi(T)xo,pj (T).’L‘()) >0;
0<i,j<n

(i) M(n,s) > 0.

Proof. Let A : P[z,z] — C be a linear functional satisfying A(z'27)=(T*T"z,,
xo) for any i, j € Ng. By Lemma 2.1, M(n, s) > 0 is equivalent to

(2.1) A(lp(z,2)]*) >0  for any polynomial p(z,2) € Py s.

Since 0 < i+ j < n and max{i — 5,0} < j if and only if 0 < ¢ < n and
max{i — 5,0} < j <n—i, (2.1) is equivalent to

A(lpo(2) + zp1(2) + - - - + Z"pn(2)?) 2 0

for any polynomial p;(z) with max{i —s,0} < degp;(z) <n—i(i=0,...,n),
which is equivalent to

> (T TIpy(T)wo, pj(T)zo) > 0
0<i,5<n

for any polynomial p;(z) with max{i — 5,0} < degpi(z) <n—i (i=0,...,n).
That is,

Z <T*i+ma.x{j—s,0}Tj-l—max{z’—s,O}pi(T)xo’pj(T)x()) >0
0<i,j<n

for any polynomial p;(z) with deg p;(2) < n—i—max{i—s,0} (i =0,...,n). O
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Given an infinite matrix A := {v;; }§5=0 of complex numbers, the full com-
plex moment problem (write: CMP) entails finding a positive Borel measure y
on the closed unit disk D in C such that ~v;; = [, 227 du(z). Let {v;;}35-, and
{8:}55=0 be two infinite matrices of complex numbers. For brevity, we write
{’)’ij}f%zo > {52']'}1'03:0 if ZOSi,an(’Yij — 5¢j)‘diaj > 0 for any a; € C and all
n € N. In [5], ones obtained that if {v;; }55=0 is an infinite matrix of complex
numbers, then {v;;}75_, solves CMP if and only if {vi;}?5_¢ > {7it1,j4+1}55=0
and M(n,n) > 0 for all n € N if and only if {7i;}%—¢ > {Vit1.j41}55=0 and
M(n,0) >0, for all n € N.

Corollary 2.3. Let T be an operator with a cyclic vector zo in H and let
Yij = (T*T7xg,20), for any i,j € Nyg. Then the following assertions are
equivalent:

(i) for any pi(2) € Pl2] (i=1,...,n) and any n € N,

Z <T*i+ma.x{j—s,0}Tj-i—max{i—s,O}pi(T)xo,pj (T)(E0> > 0;
0<i,j<n
(i) M(n,s) >0 for alln €N and any s =0,...,n,
(iii) M(n,s) > 0 for alln € N and some s =0,...,n.
Moreover, the following two assertions are equivalent:
(iv) {i5}55=0 solves CMP,

(V) {7i5}5520 > {Vit1,541}5=0 and M(n,s) > 0 for all n € N and some
s=0,...,n.

3. Double flat extension theorem

We review some useful properties which can be obtained by the similar proofs
in [3] and [5]. We omit the detail proof here.
(P1) If 44 is a representing measure, then

(M(n, $)5.5) = / Ip(2, 2)|7 dps, p(z, 2) € Pos.

(P2) If 41 is a representing measure, then M (n, s) > 0. ~

(P3) If u is a representing measure, then supp p C Z(p) <= p(Z,7) =0
for p € Py s, where Z(p) = {2z € C: p(z,z) = 0}.

(P4) Let M(n, s) be a moment matrix. If p(z, ) € Py s with p(z,2) € Py s,
then p(Z, Z) = 0 if and only if (Z, Z) = 0. ~

(Ps) Let M(n,s) > 0. If f, g, fg € Pn_1s and f(Z,Z) = 0, then
(f9)(Z,Z) = 0 in the column space Cri(n,s)-

(Ps) If 1 is a representing measure for «, then card supp p > rank M(n, s).

(P7) Let M(o0, s) be an infinite moment matrix with representing measure
p- Then card supp p = rank M (oo, s).

(Pg) Let M(oo,s) be a finite-rank positive infinite moment matrix. Then
M (o0, 5) has a unique representing measure, which is rank M (co, s)-atomic. In
this case, let r := rank M (oo, s); there exist unique scalars ay, ..., or_1such
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that Z" = g1+ - -+ a,-1Z"~1. The unique representing measure for M (oo, s)

has support equal to the r distinct roots zg, . . . , z-—1 of the polynomial z"—(ap+
-+- 4+ ar~12"71), and densities py,...,pr_1 determined by the Vandermonde
equation
1 r - 1 Po Yoo
20 22—l 41 “Yo1
26_1 ZI_l ce Z::} Pr—1 Yo,r—1

The followings is a parallel theorem corresponding to [1].

Theorem 3.1. If A € My, (C), then there exists a truncated moment se-
quence L'y, s with oo > 0 and 7v;; = Yi; such that A = M(n, s)(T'ns) if and only
if

(zp, q>A = <pa Zq)A (p7 qe Pn—l,sn zZq € Pn,s);
(4) (2p,29)a = (2P, Zq)a (P, q € Pn-1,5,2D,2q € Pr,s)-

Proof. The proof is very similar to [1] and [5], and so we will omit the proof. O

Proposition 3.2. Suppose n is even number. If 'y, s is flat and M(n,s) > 0,
0 < s < n, then M(n,s) admits a unique flat extension of the form M(n+k,s)
for all k € N.

Proof. We want construct a moment matrix M(n + 1, s) of the form

~ A B
(5 1)
where A = M(n,s), B= AW, and C = W*AW.
If n = 2w, we denote the columns of B by the flatness of
2w gz, quge guiige, | gl zeslgie
And so M (2w, s) is flat, i.e.,

ZiZ%= = p(Z,7), i=0,1,...,w,w+1,...,w+ [—;-], pi(2,2) € Paw—1.s.
Let
z2* = (2po)(Z, 2),
Z2z* = (2p)(Z,2),
7227771 = (ap2)(2, 2),

Zw+lg) gu-(§1+1

(pr+[%])(Z’ Z)'
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We first show that A is an extension of M (2w, s). We need to check (z*2!,
227) 4=Yjtkiti, for k+1 = 2w + 1, max{k — 50} <L0<i+j<2w-—1,
max{i — 5,0} <j, |(j + k) — (i +1)] < 2w. In fact,

(#5222 5 = (apl(z,2),72) 5 = (pi(2,2), 77127 5
_ <2—k22w—k’ Zi+1zj>

A = Ali+1,5)(k2w—k)
= Yj+kitl42w—k = Vi+kitl-

We now show that A is a moment matrix. By Theorem 3.1, we must show that
(a) Ais self-adjoint;
(b) <p7 q>ﬁ = <Q?ﬁ>g (p7ﬁa g,q € Pn,s);
(C) <Zpa q>;1 = <p7 5‘1),1 (pv q € Pn—l,sa zZq € Pn,s);
(d) <Zp, ZQ>Z = (2}), 2q>ﬁ (p7 g€ P’n—l,sy Zp,Zq € Pn,s)‘
Indeed, (a) clear.
(b) Since n = 2w + 1 and p, P, ¢, € Py_s, the polynomials p, g must be the

form
p(z,2) = Z aijz'2%, q(z,2) = Z b;;Z' 27,

(iL.9)EA, . (1,9 EA, o
where

A'(n’s):{(i,j):Ogi—l-jSn,max{i—s,0}§j§i+s, 0<s<n}

so (b) is clear.
(c) We take z%z!, 227 instead of p,q. Since p,q € Paws 2¢ € Pawy1s, We
must have 0 < k+1 < 2w, max{k — 5,0} <1,0 <i+j < 2w, max{i—s,0} < j.
For 0 <k+1<2w—1,max{k—3s,0} <1,0 <i+j < 2w, max{i—s,0} <j,
we have

<Z . Zkzl,zizj>g — <2kzl+1,2izj>ﬁ — <2kzl+1,2izj>A

(2524, 2 0) 0 = (FF2), 2 220) 5

For k +1 = 2w, max{k — 5,0} <[,0 <i+j < 2w — 1,max{i — 5,0} < j, we
have

(z- 2524, 227) 7 = (2R 5020) 5

Zkz2m——k+1’ Z'sz)g
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For k+1 = 2w, max{k — 5,0} < !,0 <i+j = 2w, max{i —s,0} < j, we have

(zikzl,fizj)A =

20z (Pk,Di € Pow-1,s)

Il

(d) For 0 < k+l < 2w—1,max{k—s,0} < [,0 < i+j < 2w—1,max{i—s,0} <
7, we have

(z- 22,2 720y ; =

N
™

k l+1, Zzz]+1>

(

= (z-7F 2. 729)
(.28, 2. 727) 4
(z 2822 529)

For k+!=2w,max{k —s,0} < [,0 <i+j <2w—1,max{i - 5,0} < j, we
have

(z- 32 2. 2y =

I
]
x
n
N
< I R
N

.
N

<.

+

-

Similarly, we can prove the case of 0 < k+1 = 2w—1, max{k—s,0} < l,i+j =
2w, max{i — 5,0} < j.
For k 4 [ = 2w, max{k — 5,0} < l,i+ j = 2w, max{i — 5,0} < j, we have

(z- 3% 2. 7'27) 5
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Moreover, the matrix M(n, s) also admits a flat extension of the form M (n+
2, ). In fact, we have

Zmt? = (po)(Z, 2),
27N = () (2,2),
77 = (p)(Z,2),
ZmRZmY = (Zapn)(Z, 2).

Hence M(n, s) admits a flat extension of the form M(n+k,s) forallk € N. O

Now we have the following

Theorem 3.3. Letn > 1. If 'y, sis double flat (i.e., rank M (n, s) = rank M (n—
2,5)) and M(n,s) > 0, then M(n,s) admits a unigue flat extension of the form

M{n+k,s),keN.

Proof. If n is even number, the result follows from Proposition 3.2. If n > 3
is odd number, then n — 1 is even and M(n — 1, s) is flat and positive, thus
by Proposition 3.2, M(n — 1,s) admits a unique flat extension of the form
M(n+k,s) for all k € N. O

Theorem 3.4. The truncated complez moment sequence Uy, s has a rank M (n,
s)-atomic representing measure if and only if M(n,s) > 0 and M(n,s) admits
a double flat extension M(n + 2, s), i.e.,

rank M (n, s) = rank M (n + 2, s).

Proof. Suppose M(n,s) > 0 and M(n, s) admits a double flat extension M (n+
2,s), i.e., rank M(n, s) = rank M(n+2, s). By Theorem 3.3, M(n+2, s) admits
a unique flat extension of the form M(n+3, s). Thus, the unique flat extension
of the form M (00, s) may be constructed by successive application of Theorem
3.3, and rank M (oo, s) = rank M(n, s). (P7) implies that M (co, s) has a rank
M (00, s)-atomic representing measure y, and y is clearly also a rank M(n, s)-
atomic representing measure for | I

Conversely, suppose that y is a rank M (n, s)-atomic representing measure
for 'y s. Consider M(n + 2,s)[u];then rank M(n,s) = card supp p > rank
M(n+2,s)[u](by (Pg), since 4 is a representing measure for M (n + 2, s)[u]) >
rank M(n, s), and thus M(n+2, s)[u] is a double flat extension of M(n,s). [

We discuss a simple example.
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Example 3.5. Let

1 00 0 1 50 0
0100001 0
001 i 000 1
0 0 —i 1 0 00 —i

M= 1 96 0 0 1 ¢ 0 o0
i 0 0 0 - 10 0
01 000 01 0
0 0 1 i 0 00 1

It is easy to check that rank M(3,1) = rank M(1,1) = 3. By Theorem 3.4,
I's1 admits a 3-atomic representing measure. Since Z2 =iZ and ZZ = 1, we
obtain Z3 = i1, the three atoms are the roots of 28 —4 =0, i.e., 20 = —i, 21 =
3254—%, z2:—3§+%.From

1 1 1 Po Yoo
20 zZ1 22 ~, = Yo1 ’
zg z% 23 P2 Yo2

we have pg = p1 = pp = % Thus we obtain the representing measure y =
3(62 + 62, +6,,). We can check that the measure does satisfy

%.jz/gizfdu 0<i+j<6, li—jl<4).

4. Singular quartic moment matrices

Let M(1,0) be any positive quadratic moment matrix. Then it has a flat
extension M(1,1). Indeed, to obtain such M(1,1), take o2 among roots of
the equation |z —~%,/v00| = (yo0v11 — |710/2)/700. But, in general this flat
extension can not be always constructed (see Proposition 4.1). So the study of
M(n, s) is worthwhile in the truncated complex moment problem.

Proposition 4.1. There exists a moment matriz M(2,0) with a representing
measure jn such that the number of atoms is different from rank M (2,0). This
matriz M(2,0) has an extension M(2,2) which has a rank M (2, 2)-representing
measure.

Proof. Let us consider a positive matrix

M(2,0) =

—_ O O
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with rank M(2,0) = 3. Since ZZ = 1 + (3 —31)Z% and Z3 = yo31 + (1+i)Z +
372322, by [6, Algorithms 2.7 and 2.10] we may define

T4 = 2703,

Vo3 = “Yos — Y03,

You = 2+ 2i— i,

Y33 = 273730 +2,

Y34 = 2703 — 2803 + 2iv30 + 733’7’30 - i7§37307

Y35 = 4v03730 + 4iv03730 + 2 + 20 — 2733 — iesY30-

By [6, Theorem 2.11], we need to consider the following equations

. ) . . 1. 1
3W§o - 7§o — 103730 + Wgo%s = 303730 — 1’733 - 51’783730 - 783 - 5733730,

1 .
2703730 = 2 — = (1 +)735.

5(
From the second equality, we have 43; = 2k(1 — i) for some real k, and so
[703)> = 1 — k. Substituting them in the first equation, we obtain 7k — 1 = 2k>
and k¥ = —3, which is impossible. Thus there is not any 3-atomic represent-
ing measure. Furthermore, we may construct M(2) as a positive extension of
M(2,0) with rank M (2) = 4 as following

100 0 1 0
010 0 0 0
{oe1 o o o
M22O=10900 2 1-i -2
100 147 2 1—i

000 2 1+i 2

Observe that ZZ = 1 + £(1 —14)Z? and Z? = —iZ?, which implies that 32 =
%(1 — 1)723. That is 723 = 0. Therefore, 714 = 05 = 0, and so we obtain the
flat extension M(3,3) of M(2,2)

M(3)
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 142 2 1—2 —21
0 0 1 0 0 0 2 1414 2 1—3
0 0 0 2 1-1 -2 0 0 0 0
|1 0 0 1447 2 1—2 0 0 0 0
1o o 0 2i 14+ 2 0 0 0 0
0 1—-4 -2 0 0 0 6 4—-4i —61 —4-—4
0 2 1-¢ 0 0 0 4+ 4 6 4 -4 —61
0 1+4 2 0 0 0 67 4+ 4 6 4—4
0 2¢ 1+¢ O 0 0 —A4+4 61 4+41 6
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Thus there is a 4-atomic representing measure p = pod,, + 162, + 0202, + 0304, .
The four atoms are roots of 21—222+i (=222 — 2) =0, i.e., 20 = 1+1v2+1iV2,
z1 = 1-— %\/ﬁ*%l\/ﬁ, Zo = -1+%\/§+%’L\/§, zZ3 = — —%\/_— %’L\/ﬁ Bythe

Vandermonde equation

1 1 1 1 Po Yoo
20 21 22 23 P1 _ Yo1
R p2 | | 2 |’
IO A P3 o3

we obtain four densities po = p3 = —§v2+ } and py = po = 1 + /2. Hence
we obtain a required moment matrix. O

The moment matrix M(2,2) was discussed in [1] and [2] and also M(2,0)
was discussed in [5]. So we need consider M(2,1) here. First we recall

1 Z Z 7* Zz
Yoo 7Yo1 7o Yoz 711
M(2, 1) _ Yo Y11 Y20 iz 721
Yor Yo2 711 Y03 712

Y20 Y21 Y30 Y22 Y31
Y11 Y12 Y21 Y13 Y22

By the above discussion, if M(2,1) > 0 and flat, i.e., rank M(2,1) = rank
M(1,1), then it admits a flat extension of M(3,1). Hence there is a rank
M (2,1)-atomic representing measure. Thus we have u = pod,, + p10,, +
p20,,. In fact, the flatness of M(2,1) means that Z2 = a11 + b1Z + ¢, 7,
and ZZ = asl + byZ + ¢3Z, and so we obtain Z3 = (cra2 — cea1)! + (a1 +
baci — bic2)Z + (by + c2)Z2. Hence, the atoms, zg, z1, 22, are the roots of
23— (b1 +cz)2? — (a1 + bacy — bic2)z — (c1as — cza1) = 0. And the densities
po, p1, and py can be obtained by Vandermonde equation.

Example 4.2. Let

1 ] —1 1 3

—1 3 —1 1+ 1-—z¢
M(2,1) = 1 (] 3 2% 1+4

-1 1—4 =24 6 -2-114

3 144 1—3% —-2411 6

It is easy to check that rank M(2,1) = rank M(1,1) = 3. By Theorem 3.5,
I'>,; admits a 3-atomic representing measure. Since Z2 = (—1+ 4i)1 + (—% +
02+ 3 +30)2, 22 = 101 + 3 + 1)Z + (3 — 1i)Z, we obtain Z° =
~3i2% - (L — 1) Z+ (& + 1L4) 1. The three atoms are the roots of z3+3iz2+
(3-%50)z2—- (3+%4) =0, ie, 20 = —1.0128 — 4.3466i, 2, = —0.57411 +

~~
[
e
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0.48079¢, and 2 = 1.586 9 + 0.865 79:. From

1 1 1 Po Y00
20 21 29 pP1 = Yoi s
22 22 22 p2 Yoz

we have pp = 0.00413, p1 = 0.67747, and ps = 0.31840. Thus we obtain the
representing measure p = pgd,, + p10,, + P20,

|

If M(2,1) is not flat, i.e., rank M(2,1) > 3, then we have two ideas. The
one is to find double flat extension M(4,1) and the other one is to find flat
extension M (2,2) first, and using the results of [7].

Lemma 4.3. The positivity of M(2,1) is not sufficient for the existence of
representing measure.

Proof. In fact, we let

M(2,1) =

H o oo

0 0
10
01
01
0 0

- N = OO
N = O O

Then M (2,1) is positive and the rank M (2,1) = 4. But, there is no representing
measure at all. Since M(2,1) has unique positive extension M (2,2) as the
following

100010
01 00 01
0 01 1 00O
M(2,2) = 0 01 211}
1001 21
01011 2
which has no representing measure ([7, Example 2.4]). O
Proposition 4.4. Let
10 0 o0 1
01 0O 0 0
M2,1)=| 0 0 1 3 O
0 0 730 722 731
10 0 m3 7
If M(2,1) is positive with rank M (2,1) = 4 and |yp3| # 1, then there is 4-atomic

representing measure.
Proof. Since ZZ = A1 + BZ + CZ 4 DZ?, where

A=1, B=0, C=-—2%"_ ' p___ WL __
Y22 — 703730 Y22 — Y03730
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By [3, Theorem 3.1] we know that A(2,1) admits a 4-atomic representing
measure if and only if there exists yo3 € C such that ya3v31+ (I’)’03 12— 722) Y32 =
Y037vZ; . Since

det M(2,1) =73, + (1 — va2)|r0s|® — 722 — a2 = 0,

we have that 0 # [m3{* — (Jvo3[® — 122)% = (1103]® — 722)(1 ~ |v03]?). Since
Y22 — |03/ > 0, we have our conclusion. O

In case of |yp3] = 1, in the proof of Lemma 4.2, we showed there is a case in
which there exists no representing measure.

Lemma 4.5 ([6, Lemma 2.13]). The equation Alz[* + 2Re(Cz) = B, (4 >
0, C €C, B€R) has a solution if end only if AB+|CJ? > 0.

Proof. In fact, we have |z + %]2 = éi})zgﬁ- =

Proposition 4.6. Let M(1,0) > 0. Then M(1,0) has a positive flat extension
M(1,1), that is, rank M (1,0) = rank M(1,1).

Proof. Since

Yoo Y01 Yo
M1,1)=| v 1 720 |,
Yo1 Yo2 i1

if we let z = g, then from det M(1,1) = 0, we can take z as the roots of the
equation |z — 7% /700] = (Yooy11 — 11012)/00- ad

Proposition 4.7. Let M(2,1) > 0. Then M(2,1) has a flat extension M(2,2).
In particular, if M(2,1) is singular, then has a unique flat extension M(2,2);
if M(2,1) is nonsingular, then has infinitely many flat extension M(2,2).

Proof. Put z = ~p4. Then

Yoo Yor Yo Yoz Y11 Y20
Y0 Y11 Y20 71z 721 Y30
M(2, 2) - Yoi1 Yoz Yir Yo3 Y12 ’731
Y20 Y2t Y30 Y22 Y31 2
Yir Y1z Y2t Y13 Y22 Y31
Yoz Yo3 Yi2 2 Y13 Y22

Let ¢(z) = det M(2,2) = A|z|? + 2Re(Cz) — B, for some A,B € R,C € C.
Using Mathematica ({8]), we can show that AB + |C[2 = (det M (2,1))? > 0.
According to Lemma 4.4, we know that ¢(z) = 0 has roots, so M(2,1) has a
flat extension M (2,2). O
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Example 4.8. Let

1 0 0 i 2
02— 1+ 1—i

M(2,1) = 0 1 2 24 1414
—i 1—% -2 9 2 — 10=4V10;
2 140 1-4 2+ 10=4/0; 9

then it is easy to see that M(2,1) is positive and rank M(2,1) = 4. The flat
extension M(2,2) is the form

1 0 0 i 2 —i
02— 1+ 1—i ~2i
0 i 2 2i 1+ 1—i
M@22= ;1o 9 - 10=4vI0;, 4, !
2 1+i 1—i 24 10410 9 2 ~ 10-4V10;
i 2 144 o4 2 4 10=410; 9

put z = o4, then det M(2,2) = —Al|z]2 - 2Re(C’z) + B, where A =11, B =

256\/_ 848 and C = + (ﬁ —32,/10) 4. Since AB + |C|> = 0, and
z=-$=-(3-2 10) , — 8, by Lemma 4.4, M(2,1) has a positive flat
extension M (2,2) if and only if

4 32 81
= (22210} i~ 2.
od (3 33 O)z 11

On the other hand, since ZZ =al +bZ+cZ+dZ2 and Z%2 = o' 1+V Z+c' Z+
d'Z?, where a = 310 + (2 — )b_l\/—_+ —)c—(———)\/_+
(411+12) andd—4zx/_+4,anda \/-0 llz,b’ £V10+ (3 — 1),
¢ = (ﬁ )\/_ + (11 ) and d’ 10— i Moreover the matrix

M(2,1) has the following ﬂat extensmn of the form

(2,2)

1 0 0 i 2 i

0 2 —i 1+i 1-i ~2i

0 i 2 2i 1+ 13
Tl-io1-d -2 9 2 - 10-4/10; (32,75 4y — &L

2 144 1-i 24 10=4V10; 9 2 — 10-4V10;

i 2 1+ (5-2V10)- 8 24 10410, 9
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By [1, Theorem 3.1] we know that M(2,2) admits a flat extension and I's 2
admits a 4-atomic representing measure. The atoms are the roots of

103 119 8815 1319
0 = (E N @2) Vio+ (1584 T 792 Z)

1487 205\ (34 41,
(50~ 30) + (- 5¢) Vo) -

1253 35 5 59, ,
+<(792 +§§Z>+<§§+@Z>M>Z

43 35, 23 7. . (45 5, )
+((E+22Z> - (1:72_@2) \/1_0)2 +(176 881@)%

In fact, the roots are zp = —1.8218 + 0.88716¢, 2; = —0.56381 — 0.878514, 29 =
1.3177 4+ 1.0344, and 23 = 5.5103 — 6.11077 and the densities are py = 0.09659,
p1 =2 0.57237, pa =2 0.33058, p3 =2 0.00046.

Example 4.9. Let

M(2,1) =

= O O O =
OO O =O
OO OO
=N O OO
N = OO =

Since det[M(2,1)]4 = 2,det M(2,1) = 1, M(2,1) is positive and nonsingular.
If we let yo4 = « + yi, then M (2,1) has a flat extension of M (2,2) if and only
if 22 + y? = 22. Thus, in particular, if we take z = 2,y = 0, then one of the
flat extension is

100010
01 00O0TO0
0 01 00O
M(2,2) = 0 00 21 2
1001 21
000 21 2

It is easy to see that Z2 = Z2. Let vo3 = s +ti, by [3, Theorem 4.1], y41 = 723,
and I'y o admits a 5-atomic representing measure if and only if s =0 or t = 0.
In particular, if we take 23 = ¢, then

Z3 = 31 +1Z+22+2i2%-3iZ2Z,

Z7? = -3i1+2Z2+2Z-2%2%+3i22Z,
Z% = —151—iZ+iZ-92°+1722Z.
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By some transformation, we obtain Z% = ~9i1 + 3Z — 12iZ2% + 273 + 5iZ%.
Thus, the five atoms and the densities are

20 = —/3, po = 0.08333,
21 = /3, p1 2 0.08333,
22 & —0.80979%,  py = 0.39572,
23 22 0.729 184, p3 =2 0.43731,
24 =2 5.080 61, pa = 0.00031.

Therefore, the 5-atomic representing measure is 4 = pod,, + P16, + p2ds, +
P3623 + /34524-

5. Nonsingular quartic moment matrices

We introduce an algorithm for finding moment measure of the nonsingular
matrix M(2,0). The case of M(2,1) and M (2,2) can be discussed similarly and
so we leave them to interesting readers. For brevity, we write M(3) := M(3,3)
and E(3) := M(3,0) as usual.

Recall that if M(2) has a flat extension M (3), then there exists an associ-
ated moment measure ([1]). However the nonsingular quartic moment problem
of M(2) is open still ([7]). In this section we discuss the nonsingular quar-
tic moment problem of E(2). Because the double flatness is required on the
case of E(2), we assume that F(2) is positive and invertible and has a double

flat extension F(4) for being time. Then we obtain the corresponding finite
sequence

Y Y005 Y01, Y10, Y025 Y115 Y20, Y12, Y21, V13, Y225 V31, - - - 5 Y44, Y53, V62-

Since E(2) is positive and invertible, Ay > 0 for all d = 1,2, 3 and 4. In this
case, there exist ¢y, ¢1,c2, c3 and dy, d1, da, d3 such that

(5.1a) =yl +a1Z+ 72 + 322,
(5.1b) ZZ? =dol +d1Z +dy 2% + d3Z 2,
where
Yo3  Yo1 Yo2 it Yoo Yoz Yo2 i1
co = T lms v om2 o = Tl mo M3 M2
Ag| Y23 Y21 Y2 va |’ Ayl v20 Y23 Y22 Y31 |’
Y14 Y12 Y13 722 Y11 Y14 Vi3 Y22
Yoo Yor o3 i1 Yoo Yo1 Yo2 Y03
_ 1 1 vo 1 ms3 Y21 _ 1 vie 7m1 72 ms
Co = —— y €3 = — 3
Ag| 720 Y21 Y23 Y31 Ayl 720 o1 Y22 Y23
Y1 Y12 Y4 Y22 Y1 Y12 Y13 Y14
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and

Y12 Yo Yo2 Y11 Yoo Y12 Y02 11

_ 1ty vy om2 oy _ 1 0170 722 m2 Y
dO - A 3 dl - A ’

Ag| Y32 Vo1 Y22 Va1 Ag| Y20 Y32 Yoz Va1

Y23 Y12 M3 Y22 Y11 Y23 Y13 Y22

Yoo Yo Y12 Y11 Yoo Yo1 Yoz Y12

_ 1 | o Y1 Y22 Y21 _ Ll yo M1 m2 72

dy = — , d3=—
Agi 720 Y21 Y32 a1 Ag| Y20 Y21 Y2 Y32
Y1 Y12 Y23 Y2 Y1 Y12 Y13 Y3

We note that ¢; (¢ = 0,1,2,3) depends on 73,23, and y14; while, d; (i =
0,1,2,3) depends on p3 only. Since Z* = ¢oZ + 122 + ¢32°% + c3Z2Z? and
Z7Z3 =doZ +d1Z% + d Z3 + d3ZZ?, we have

(5.2a) Yo4 1= Co7Yo1 + €102 + C2Y03 + €312,
(5.2b) Y34 1= Co¥31 + €132 + C27Y33 + €342,
(5.2c) , Y25 := Co7Y22 + C17Y23 + C27Y24 + C37Y33-
Suppose
(5.3) Z27% = el + e1Z + €32 + €327 for some e; € C.
Then
Y22 Yo1 Yoz M1 Yoo Y22 Yoz 711
_ 1 Y32 Y11 M2 Y21 _ 1 | 7v0 732 72 Y21
€0 = 71— y €1 = ’
Ag| Y2 Y21 Y22 Y31 Ag | Y20 Va2 Y22 Y31
Y33 Y12 Y13 Y22 Y11 Y33 Y13 Y22
Yoo Yot Y22 M1 Yoo Yo1 Yoz Y22
_ 1 Y0 Y11 Y32 Y2t _ 1 Yo Y11 Y12 Y32
€y = — , €3 = —
Ag] Y20 Y21 Va2 Va1 Ayl 720 Y21 Yoz Va2
Y11 Y12 Y33 7Ye2 Y11 Y12 713 Y33

Note that e; (¢ =0, 1,2, 3) depends on 723, Y24, and 7s3.
Comparing the columns of E(4), we have the following.

Proposition 5.1. Assume that E(2) is positive and invertible. Then E(2) has
a double flat extension E(4)if and only if

CoY30 + C17¥31 + 2732 + 3741 = doya1 + divez + dayas + dsyse,
(5.4) CoYa1 + C17Y42 + C2¥43 + 3752 = doYa2 + diysz + dayza + d3vas,
doys2 + diva3 + d2y34 + d3yaz = eova2 + €123 + €224 + €333,
€032 + C17733 + C2Y34 + 343 = doYes + diye4 + dovas + d3ysa.
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Corollary 5.2. Let

E(2) = a>0, b>ad’

QOO
oo o
oS oo
oo

Then E(2) is positive and invertible and has a double flat extension E(4).

Proof. For E(4), if we let y23 = 0,703 = = + yi and 414 = s + i, then we can
calculate

_as—ab+i{at — yb) o _ A{ax —s) +ifay + 1)
Co = _b+a2 ) C1—02_07 C3 = “b+0/2 3

do = d2:d3:0, and dlzéb.

Define 724 = 0,733 = 28%, s0 eg = €1 = €3 = 0,e3 = 1p. Define v34 = 0,905 =
(s +it) 2. Then it follows from (5.4) that (z— 2)2 4 (y— %)? =0 and s 442 =
%;. Therefore (5.4) has a solution vo3 = 0, 53 = Vabe®, and ;4 = b{'—eia.

Thus we have this corollary. 0

Algorithm 5.3. (I) Calculate ¢;,d;,i =0,1,2,3;
(IT) Define 24, v33 as

Y24 = cCoYa1 + C1Ya2 4+ C27Y23 + €332,
Y33 = Co¥30 + C1Y31 + Coy32 + €341, OF
doy21 + di7y22 + dayas + d37ysz;
(II1) Calculate e;,7 = 0,1,2,3;
(IV) Define v34, v25 as
Y34 = Cp7Y¥31 + C1¥32 + C27Y33 + 3742,
Y25 = CpY22 + C17Y23 + c2Y24 + €37335
(V) Solve (5.4) with respect to 703, Va3, Y14;

(VI) If (5.4) has a solution, then go to the next step;
(VII) Define o4, 115, Y44, V35, 726 25

Yo4 = Co%o1 + C17Yo2 + €203 + €312,
M5 = coViz2 + g + c2v1e + €3723,
Y44 = CoY41 t+ C17Y4z + C2Ya3 + c37Y52,
Y35 = co¥s2 + ¢1Y33 + Ca¥ag + CaVas,
Y26 = Cove3 + C1724 + Coves + C3Y34)

(VIII) We obtain a double flat extension E(4) of E(2).
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Example 5.4. Let us consider a quartic moment matrix

1 00 3
0 300
E(Q):OS%O
3 00 3

Since Ay =1,Ay = 3,A3 = i, and Ag = %, it is obvious that F(2) is positive
and invertible. We know F(2) has a representing measure by Corollary 5.2.
Here we find concrete representing measure according to Algorithm 5.3.

(D) co = 273 — 2m14,e1 = O,c2 = 2723,c3 = —2703 + 4m14, and do =
—2v23,d1 = 1,da = 2732, d3 = 4y23.
(II) Define va4,733 as va4 := 2723 + (— 203 + 4714) V32, Y33 := 3 + 6732723
(III) eo = —12y32723, €1 = 2732, €2 = 472, — 47237730 + 8723741, and e3 =
2432723 + 1.
(IV) Define 734,725 as

1
Y34 = 2723(5 + 2v32723 + 4¥23732)
+(=2703 + 4714) (2735 + (=230 + 4v41)723),
Y25 = 03 — Y14 + 2723 (2733 + (— 2703 + 4v14) V32)

1
+ (=203 + 4714) (5 + 6732723) .

(V) By Proposition 5.1, E(2) admits a double flat extension E(4) if and
only if

730703 — 730714 — Y417Y03 + 2741714 = i + 2723732
and F; (703, Y14, v23) = 0,4 = 1, 2, where
F (703,’)’14, 723)
= —8vs2y23 + 2va1714 — 48735735 + 8730733 — 16741733
—% + 167237¥30732703 — 327237Y30732Y14
—327y23741732703 — 64723741Y32714,

and

F>(Y03, 714, 723)

= —dy30723 — 8073733 — 8730783 + 16741735
+16v23730732703 — 3272330732714
—327237741732703 + 647y23741Y32Y14.

If vo3 = 0, then F1(703,714,723) = 2v41714 — 3, and F5(Y03, Y14, ¥23) =
0. Thus |y14] = 3 and Y3070 — V30714 — V41703 = —+. If we let 714 = 14,
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then we have vg3 = %z Thus we obtain a solution of (5.4), y23 = 0 and
Y14 = Y03 = %4

(VI) Define yo4 = 0,715 = 0,744 = 3,735 = 0, and 26 = 0;

(VII) Finally, we obtain a double flat extension of E(2) as following

1 o o I i 0o o0 0 3
o 1+ 0 0 0 3 3 0 0
o o0 f o o0 0 0 3 O
; 0 0 1 %11' 0 0 0 3
DF=| -4 0 0 - & 0 0 0 —gi
o 2 0 0 0 & i 0 0
0 -3 0 0 0 —3i 3 0 0
o 0o %+ 0 0 0 0 3 O
i 0 o0 L ¥ 0 0 0 3

(VIII) The four ators are zp = 0,21 = %i-l— %\/?_), 22 = %i— %\/5, and z3 = —i.
‘We know that zg is the center of unit disc D and 21, 22, 23 are on the unit
circle T. Since 73 = %i, then pg = %,pl = py = p3 = %. Therefore,
one of the representing measure is

1 1
©w= -2—(50 + 6(5%1+%\/§+5%1_%\/§+6_1)
We close this article as the following open problem.

Problem 5.5. If E(2) is positive and invertible, does it have a double flat
extension E(4)?
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