DOI QR코드

DOI QR Code

HOLOMORPHIC FUNCTIONS SATISFYING MEAN LIPSCHITZ CONDITION IN THE BALL

  • Kwon, Ern-Gun (DEPARTMENT OF MATHEMATICS EDUCATION ANDONG NATIONAL UNIVERSITY) ;
  • Koo, Hyung-Woon (DEPARTMENT OF MATHEMATICS KOREA UNIVERSITY) ;
  • Cho, Hong-Rae (DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY)
  • Published : 2007.07.30

Abstract

Holomorphic mean Lipschitz space is defined in the unit ball of $\mathbb{C}^n$. The membership of the space is expressed in terms of the growth of radial derivatives, which reduced to a classical result of Hardy and Littlewood when n = 1. The membership is also expressed in terms of the growth of tangential derivatives when $n{\ge}2$.

Keywords

References

  1. P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of $C^n$, Rev. Mat. Iberoamericana 4 (1988), no. 1, 123-153
  2. P. L. Duren, Theory of $H^p$ spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970
  3. M. Jevtic and M. Pavlovic, On M-harmonic Bloch space, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1385-1392 https://doi.org/10.2307/2161125
  4. W. Rudin, Function theory in the unit ball of $C^n$, Grundlehren der Mathematischen Wissenschaften, 241. Springer-Verlag, New York-Berlin, 1980