DOI QR코드

DOI QR Code

THE BEHAVIOR OF THE TWISTED p-ADIC (h, q)-L-FUNCTIONS AT s = 0

  • Simsek, Yilmaz (FACULTY OF ART AND SCIENCE DEPARTMENT OF MATHEMATICS AKDENIZ UNIVERSITY)
  • 발행 : 2007.07.30

초록

The main result of this paper is to construct the derivative twisted p-adic (h, q)-L-functions at s = 0. We obtain twisted version of Theorem 4 in [17]. We also obtain twisted (h, q)-extension of Proposition 1 in [3].

키워드

참고문헌

  1. J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc. 233 (1977), 321-337 https://doi.org/10.2307/1997840
  2. J. Diamond, On the values of p-adic L-functions at positive integers, Acta Arith. 35 (1979), no. 3, 223-237 https://doi.org/10.4064/aa-35-3-223-237
  3. B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at s = 0, Invent. Math. 50 (1978), no. 1, 91-102 https://doi.org/10.1007/BF01406470
  4. G. J. Fox, A p-adic L-function of two variables, Enseign. Math. (2) (2000), no. 3-4, 225-278
  5. K. Iwasawa, Lectures on p-adic L-functions, Princeton Univ. Press 1972
  6. T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), no. 2, 21-26
  7. T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86 https://doi.org/10.2206/kyushujm.48.73
  8. T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187 https://doi.org/10.1016/S0012-365X(01)00293-X
  9. T. Kim, q-Volkenborn integration, Russ. J. Math Phys. 9 (2002), no. 3, 288-299
  10. T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math Phys. 10 (2003), no. 1, 91-98
  11. T. Kim, q-Riemann zeta function, Int. J. Math. Sci. (2004), no. 9-12, 599-605
  12. T. Kim, A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 161-166
  13. T. Kim, Introduction to Non-Archimedian Analysis, Kyo Woo Sa (Korea), 2004
  14. T. Kim, p-adic q-integrals associated with the Changhee-Barnes' q-Bernoulli Polynomials, Integral Transform. Spec. Funct. 15 (2004), no. 5, 415-420 https://doi.org/10.1080/10652460410001672960
  15. T. Kim, A new approach to q-zeta function, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 157-162
  16. T. Kim, Power series and asymptotic series associated with the q-analogue of two-variable p-adic L-function, Russ. J. Math Phys. 12 (2005), no. 2, 186-196
  17. T. Kim, A new approach to p-adic q-L-functions, Adv. Stud. Contemp. Math. 12 (2006), no. 1, 61-72
  18. T. Kim and S.-H. Rim, A note on two variable Dirichlet L-function, Adv. Stud. Contemp. Math. 10 (2005), no. 1, 1-6
  19. T. Kim, L. C. Jang, S.-H. Rim, and H. K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21
  20. N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455-468 https://doi.org/10.1215/S0012-7094-79-04621-0
  21. N. Koblitz, p-adic Analysis: A short course on recent work, London Math. Soc. Lecture Note Ser., Vol. 46, 1980
  22. T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte. I: Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339
  23. K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985) 113-125
  24. Y. Simsek, On q-analogue of the twisted L-functions and q-twisted Bernoulli numbers, J. Korean Math. Soc. 40 (2003), no. 6, 963-975 https://doi.org/10.4134/JKMS.2003.40.6.963
  25. Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218
  26. Y. Simsek, q-analogue of the twisted l-series and q-twisted Euler numbers, J. Number Theory 110 (2005), no. 2, 267-278 https://doi.org/10.1016/j.jnt.2004.07.003
  27. Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. Appl. 318 (2006), no. 1, 333-351 https://doi.org/10.1016/j.jmaa.2005.06.007
  28. Y. Simsek, Twisted (h; q)-Bernoulli numbers and polynomials related to twisted (h; q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2) (2006), 790-804 https://doi.org/10.1016/j.jmaa.2005.12.057
  29. Y. Simsek, Twisted p-adic (h; q)-L-functions, submitted
  30. Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (1) (2007), 466-473 https://doi.org/10.1016/j.amc.2006.08.146
  31. Y. Simsek, D. Kim, and S.-H. Rim, On the two-variable Dirichlet q-L-series, Adv. Stud. Contemp. Math. 10 (2005), no. 2, 131-142
  32. H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math Phys. 12 (2005), no. 2, 241-268
  33. L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, Inc. (2st Ed.), 1997
  34. P. T. Young, On the behavior of some two-variable p-adic L-function, J. Number Theory 98 (2003), no. 1, 67-88 https://doi.org/10.1016/S0022-314X(02)00031-8

피인용 문헌

  1. Multiple two-variable p-adic q-L-function and its behavior at s = 0 vol.15, pp.4, 2008, https://doi.org/10.1134/S106192080804002X
  2. On Interpolation Functions of the Generalized Twisted -Euler Polynomials vol.2009, pp.1, 2009, https://doi.org/10.1155/2009/946569
  3. THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS vol.47, pp.6, 2010, https://doi.org/10.4134/BKMS.2010.47.6.1181
  4. On ( h , q ) -Daehee numbers and polynomials vol.2015, pp.1, 2015, https://doi.org/10.1186/s13662-015-0445-3
  5. On the behavior of two variable twisted -adic Euler -functions vol.71, pp.12, 2009, https://doi.org/10.1016/j.na.2009.01.048
  6. A Note on the Multiple Twisted Carlitz's Type -Bernoulli Polynomials vol.2008, 2008, https://doi.org/10.1155/2008/498173