References
- S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl. 201 (1996), no. 2, 609-630 https://doi.org/10.1006/jmaa.1996.0277
- R. P. Agarwal, Y. J. Cho, and N. J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett. 13 (2000), no. 6, 19-24
- S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1995), no. 3, 421-434 https://doi.org/10.1287/moor.13.3.421
- X. P. Ding and C. L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999), no. 1, 195-205 https://doi.org/10.1023/A:1021777217261
- T. C. Lim, On fixed point stability for set-valued contractive mappings with application to generalized differential equations, J. Math. Anal. Appl. 110 (1985), no. 2, 436-441 https://doi.org/10.1016/0022-247X(85)90306-3
- R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), no. 2, 299-304 https://doi.org/10.1016/0022-247X(92)90207-T
- S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), no. 1, 475-485 https://doi.org/10.2140/pjm.1969.30.475
- M. A. Noor, General algorithm and sensitivity analysis for variational inequalities, Journal of Applied Mathematics and Stochastic Analysis 5 (1992), 29-42 https://doi.org/10.1155/S1048953392000030
- M. A. Noor and K. I. Noor, Sensitivity analysis for quasi-variational inclusions, J. Math. Anal. Appl. 236 (1999), 290-299 https://doi.org/10.1006/jmaa.1999.6424
- J. Y. Park and J. U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004), 43-48 https://doi.org/10.1016/S0893-9659(04)90009-2
- D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff, Romania, 1978
- Salahuddin, Parametric generalized set-valued variational inclusions and resolvent equations, J. Math. Anal. Appl. 298 (2004), no. 1, 146-156 https://doi.org/10.1016/j.jmaa.2004.04.037
- N. D. Yen, Lipschitz continuity of solution of variational inequalities with a parametric polyhedral constraint, Math. Oper. Res. 20 (1995), no. 3, 695-708 https://doi.org/10.1287/moor.20.3.695
Cited by
- Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics vol.139, pp.32, 2017, https://doi.org/10.1021/jacs.7b04981