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PARAMETRIC GENERALIZED MIXED IMPLICIT
QUASI-VARIATIONAL INCLUSIONS

JONG YEOUL PARK AND JAE Uc JEONG

ABSTRACT. An existence theorem for a new class of parametric general-
ized mixed implicit quasi-variational inclusion problems is established in
Hilbert spaces. Further, we study the behavior and sensitivity analysis of
the solution set in this class of parametric variational inclusion problems.

1. Introduction

Sensitivity analysis of solutions for variational inequalities has been studied
extensively by many authors via quite different techniques.

By using the projection method, Dafermos [3], Yen [13], Mukherjee and
Verma [6], Noor [8] dealt with the sensitivity analysis of solutions for some
variational inequalities with single-valued mappings in finite dimensional spaces
and Hilbert spaces.

By using the resolvent operator technique, Adly [1], Noor and Noor [9], and
Agarwal, Cho and Huang [2] studied sensitivity analysis of the solution set with
single-valued mappings in Hilbert spaces.

Recently, by using the resolvent operator technique, Park and Jeong [10] and
Salahuddin [12] studied the behavior and sensitivity analysis of the solution
set for parametric generalized mixed variational inequalities and parametric
generalized variational inclusion problems with set-valued mappings in Hilbert
spaces, respectively.

The purpose of this paper is to introduce and study the behavior and sen-
sitivity analysis of the solution set for a class of parametric generalized mixed
implicit quasi-variational inclusion problems in Hilbert spaces by using the con-
cept of the resolvent operator and the property of fixed point sets of set-valued
contractive mappings. In particular, the classes of problems studied by Park
and Jeong [10], Ding and Luo [4], and Dafermos [3] will be special cases of our
problems.
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2. Preliminaries

Let H be a real Hilbert space with a norm || - || and an inner product (-,-).
Let C(H) denote the family of all nonempty compact subsets of H and H(, )
denote the Hausdorff metric on C(H) defined by

H(A, B) = max{supd(a, B),supd(4,b)}, VA,Be C(H),
a€A beB

where d(A,b) = inf,c 4 ||a — b|| and d(a, B) = infpecp |la — b]|.

Let © be a nonempty open subset of H in which the parameter A takes
values. Let M : HxHxQ - H N: HxHxHxQ — H, g: Hx
Q@ — H be single-valued mappings. Let A,B,C,D,E,F : H x Q@ — C(H)
be set-valued mappings. Let z € H be given and let ¢ : H x H x 2 —
RU{+00} be such that for each fixed (2, \) € HxQ, (-, z, ) is a proper convex
lower semicontinuous functional satisfying g(H, A)Ndom(d¢(, z, \)) # ¢, where
9¢(-, z,A) is the subdifferential of (-, 2,A). By [11], 8¢(-,2,A) : H —» 2H is a
maximal monotone mapping. Let b: H x H x 2 — R be a real-valued function
satisfying

(i) b(x,y, A) is linear in first argument,

(ii) b(z,y, A) is bounded, i.e., there exists a constant v > 0 such that

b(z,y, ) < viz|lllyll,
(iii) for all (z,y,2,\) € H x H x H x Q,
b(xaya )‘) - b(m,z,)\) < b(xay - Z,)\).

In this paper, we shall consider the following parametric generalized mixed
implicit quasi-variational inclusion problem(PGMIQVIP): for each fixed A € Q,
find z € H, a € A(z,)), b € B(z,)), c € Cz,\), d € D(z,)\), e € E(z,\),
f € F(z, ) such that

(M(g(x,A),a,A) = N(b,e,d, \) + 2,y — g(z,A))
(2.1) +b(y, e, ) — blg(z,\), e, \)
Z(p(g(xa)‘)afv)‘)—so(yvfa)‘)a vyEH

Special Cases

(@) If b(z,y, A) = 0 for all (z,y,A) € H x H x Q, then problem (2.1) reduces
to the following parametric quasi-variational inclusion problem: for each fixed
A€ Q findx € H,a € Alz,N), b € B(z,)), ¢ € C(z,N), d € D(z, ),
f € F(z, ) such that

<M(g(z, )‘)7 a, )‘) - N(ba ¢, d? )‘) +2,y— g(a:, ’\)>
Zcp(g(m,)\),f,)\)—w(y,f,)\), VyEH

(IT) If M(x,a, ) = 0 for all (z,a,\) € HxHxQ, N(b,c,d, \)=—Ny(b,c,d, \)

for all (b,¢,d,\) € Hx Hx H x(, and z = 0, then problem (2.2) reduces to the

(2.2)
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following parametric problem: for each fixed A € Q, find = € H, b € B(z, \),
ce€C(z,A), d € D(z,\), f € F(x, ) such that
(2.3) (N1(b,c,d, A),y — g2, N)) 2 w(g(x, ), £, X) — 9(y, £, V),
forally € H.

() If K : H x Q@ — 2F is a set-valued mapping such that for each (y, \) €
H xQ, K(y,)) is a closed convex subset of H and for each (y,)) € H x (,
©(, 4, A) = Ig(y»)(-) is the indicator function of K (y,A), then problem (2.3)
reduces to the following parametric problem: for each fixed A € Q, find z € H,
be B(x,\), c€ C(z, A), d € D(z,\) such that
(2.4) (N1(b,c,d, \),y — g(z,\)) >0, Vye H.

In this paper, our main aim is to study the behavior of the solution set S()\) of
(PGMIQVIP) (2.1), and the conditions on these mappings A, B,C, D, E, F, M,
N, g,b, ¢ under which the function S()) is Lipschitz continuous (or continuous)
with respect to the parameter )\ € ).
Let H be a Hilbert space and let G : H — 2 be a maximal monotone
mapping. For any fixed p > 0, the mapping Jf : H — H defined by
Jf(z) = (I+pG) }z), Vz€H,

is said to be the resolvent operator of G, where I is the identity mapping on
H.

It is well known that Jf is a nonexpansive mapping (see [11]).
Definition 2.1. A mapping g: H x Q — H is called
(1) a-strongly monotone if there exists a constant & > 0 such that
(9(z,X) —g(y, N,z —y) > allz —y|?, V(z,y,)\) € Hx HxQ.
(2) B-Lipschitz continuous if there exists a constant § > 0 such that
o A) — gy, VIl < Blle —yll, V(z,,X) € H x H x Q.

Definition 2.2. Let A : H x Q — C(H) be a set-valued mapping and M :
H x H x ) — H be a single-valued mapping. Then

(1) A is said to be n-relaxed Lipschitz continuous with respect to the second
argument of M if there exists a constant n > 0 such that

(M(Z,U, )‘) - M(Z,U,)\),$ - y> S “77“96 - yll21
V(z,y,2,\) € Hx Hx HxQu¢c Az, \),v € Ay, ).

(2) A is said to be A4-Lipschitz continuous if there exists a constant A4 > 0
such that

H(A(z,)), A(y, ) < Ml - yll, Y{(z,y,A) € Hx HxAQ.

Definition 2.3. A mapping M : H x H x Q — H is said to be M;-Lipschitz
continuous in the first argument if there exists a constant M; > 0 such that

1M (z,a,)) — M(y,a, || < My[|z —yll, Y(z,y,a,\) € Hx H x H x Q.
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In similar way, one can define the Lipschitz continuity of M in the second
argument.

Definition 2.4. Let B,C : H x Q — C(H) be set-valued mappings and
N:Hx H x H x Q- H be a single-valued mapping. Then

(1) B is said to be v-relaxed Lipschitz continuous with respect to the first
argument of NV if there exists a constant v > 0 such that

<N(U,C, d, )‘) - N(U)Ca d> )\),.’E - y) S —’Y”.’E - y“27
Y(z,y,¢,d,\) € Hx H x H x H x Q,u € B(z,\),v € B(y, \).

(2) C is said to be o-generalized pseudo-contractive with respect to the
second argument of N if there exists a constant ¢ > 0 such that

<N(bau3d7)‘) —N(b,’U,d, )\),I’*y> S 0'||$-‘y||2,
V(z,y,b,d,\) e Hx Hx Hx Hx Q,u € C(z, A),v € Cy, \).

(3) N is said to be Nj-Lipschitz continuous in the first argument if there
exists a constant N7 > 0 such that
HN(:E’ ¢, d7 ’\) - N(y’cv da )‘)” < N1||$ - y”?
Y(z,y,¢,d,\) € Hx Hx H x H x Q.

In similar way, one can define the Lipschitz continuity of N in the second
and third argument, respectively.

Lemma 2.1 ([5]). Let (X,d) be a complete metric space and Ty, T : X —
C(X) be two set-valued contractive mappings with same contractive constant
6€(0,1), ie.,

H(Ti(z), Ti(y)) < bd(z,y), Va,ye€ X,i=1,2.
Then

5 sup AT (0), To@),

where F(T;) is the fized point set of T;, 1 = 1, 2.
Lemma 2.2. For each fized A € Q, let b: H x H x Q — R be a real valued

function satisfying the conditions (i)-(iii) as mentioned before. Then for each
y € H, there exists a unique mapping h(y,\) € H such that
b(z,y,A) = (h(y,N),z), Vz€H,
and
Ia(y: A) = h(z, Ml < vlly - 2ll, Vy,z € H,

where v is a positive constant, i.e., the mapping h : H x Q — H is Lipschitz
continuous.
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Proof. By the condition (ii) on b(-,-, \), we have
b(z,y, A)| < vizlllyll, Vz,y € H,
and hence
b(z,0,A) = b(0,y,A) =0,

and for each y € H, « — b(z,y,\) is continuous. By the conditions (ii) and
(iil), we have

bz, A) — bz, %, V)] < [b(ay — 2, 3)
SI/”ZHH@/—Z”, Vm,y,ZEH,

and so for each x € H, y — b(z,y, \) is also continuous. Hence for each given
y € H, £ — b(z,y,\) is a continuous linear functional on H. By the Riesz
representation theorem, there exists a unique point A(y, A} € H such that

b(z,y,\) = (h(y,N),z), VreH,

and
1R (y, A) = h(z, )| = Sue, |[(h(y, A) — h(2,A), z)]
= Ssup 'b($7y5)‘> - b(x,z, )‘)l
lzll<1

S sup ]b(x,y—z,)\)l
llzll<1

IN

sup vzl|y - 2|
el <1

vy —zll, Vy,z€H.

IA

3. Sensitivity analysis of solution set
We first transfer the PGMIQVIP (2.1) into a parametric fixed point problem.

Theorem 3.1. For each fized A\ € Q, (z,a,b,c,d,e, f) is a solution of the
PGMIQVIP (2.1) if and only if there ezist x € H, a € A(z,)), b € B(x,)),
c€C(z,\), de D(z,)), e € E(z,)), and f € F(x,\) such that the following
relation holds:
9(z,2) = JPCI N [g(z, X) ~ p{M(g(2,)),0,A) = N(b,¢,d, \)
+ 2+ hie, M)},
Proof. For each A € ), suppose that (z,a,b,¢c,d, ¢, f) is a solution of the PG-
MIQVIP (2.1). Then there exist z € H, a € A(z,\), b € B(z,)), c € C(z, \),
d € D(x,)\), e € E(z,)), f € F(z, \) such that
(M(g(z,7),a,A) = N(b,c,d,\) + 2,y — g(z,)))
(32) + b(y767A> - b(g(m,)\),e,)\)
2‘p(g(ma>‘>)f1>‘)_<p(y9f’)‘)a \V/yGH

(3.1)
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By Lemma 2.2, we have
b(y,e,2) —blg(x, A), €, A) = by — g(=, A), €, A)
= (h(e, ),y —g(z,A)), Vye€ H.
Hence the relation (3.2) holds if and only if
(33) ¢(y: [, 2) = p(g(z, A), £, ) 2 (N(b,¢,d, A) — 2 — M(g(x, }), 0, A)
— h(e,A),y — g(z, A)).

The relation (3.3) holds if and only if
(3.4) N(b,c,d,\) —z— M(g(z,\),a,\) — h(e, A) € dp(-, f,A\)(g(z, N)).
By the definition of J2*(*/*) the relation (3.4) holds if and only if
gz, X) = J2#0IN[g(z, A) — p{M(g(x, ), 0, )) — N(b,c,d, )
+ 2+ h(e, A},
where p > 0 is a constant. Hence we obtain that (z,a,b,c,d,e, f) is a solution

of the PGMIQVIP (2.1) if only if there exist z € H, a € A(z, A), b € B(z, A),
c€ C(z,A),d € D(z,\), e € E(z,)), and f € F(z, ) such that (3.1) holds. O

Theorem 3.2. Let A,B,C,D,E,F : H — C(H) be H-Lipschitz continuous
with constants Aa, A, A¢, Ap, A, and Ap, respectively. Let M : H x H x ) —
H be My, My-Lipschitz continuous in first and second arguments, respectively.
Let N: Hx Hx HxQ — H be Ni, Ny, and Ns-Lipschitz continuous in
first, second, and third arguments, respectively. Let B : H x Q — H be ~-
relazed Lipschitz continuous with respect to the first argument of N and C
be o-generalized pseudo-contractive with respect to the second argument of N.
Let g : H x Q — H be a-strongly monotone and 3-Lipschitz continuous. Let
b: Hx HxQ — R be a function satisfying the conditions (i)-(iii) mentioned
before. Let ¢ : H x HxQ — RU{+oo} be proper conver lower semicontinuous
in the first argument with g(H )N domdy(-, z,\) # ¢ for all (z,\) € H xQ such
that

1722022 (z) — J2ECYN ()| < pllw — yll, V(z,y,2,A) € Hx Hx Hx Q.
Suppose that there exists a constant p > 0 satisfying
k=2v/1-2a+ 3+ pr,
p= Ni1Ap + NoAc > M1B+ MaAa + N3Ap +vAg =g,
v—o>(1-kqg++/ (- k2~ k),
35) |p- 1= ;2:(1;2— k)q| _Vb-o9-a —1;3@2(; (P* - k2 —k)
Then, for any fized A € Q, we have the following:

(1) the solution set S(\) of the PGMIQVIP (2.1) is nonempty,
(2) S(X) is a closed subset in H.
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Proof. (1) Define a set-valued mapping F : H x Q — 21 by

Fla,») = U (z — gl A) + J2¢CF Vg (a, 3)

a€A(x,2),bEB(a,2),c€C(x,))
deD(x,\),e€E(x,)\),fEF (z,))

— p{M(g(z,)),a,A) = N(b,c,d, \) + z + h(e, \)}])

for all (z,A) € H x Q. For any (z,\) € H x Q, we have F(z,\) € C(H). Now

for each fixed A € ©, we prove that F(z, \) is a set-valued contractive mapping.
For any (x,A), (y,A) € H x Q and u € F(z,)), there exist a; € A(z, \),

by € B(z,A), c1 € C(z, A), di € D(z,)), e1 € E(x,\), f1 € F(z,)) such that

u=2x—g(z,\) + J,?‘p("fl’k) lo(z, A) — p{M(g(z, A), a1, )
- N(bl, c1,dy, /\) +z+ h(el, )\)}]
Since A(y,A), B(y, ), Cy, X), D(y, \), E(y,\), F(y, \) € C(H), there exist
az € A(y,\), ba € B(y,A), c2 € C(y,\), da € D(y,)), ea € E(y,)), and
f2 € F(y, \) such that

llax — aa|| < H(A(, X), Ay, A)),
)

Ibr — ba|| < H(B(z, ), B(y,\)),
(3.6) ler = eall < H(C(z, ), Cly, N)),

ldy = da|| < H(D(=, A), D(y, \)),

ler — eall < H(E(z, A), E(y, \)),

If1 = fall < H(F(x,\), F(y, \)).
Let

v=y—g(y,A) + JZCV gy, N) — p{M(g(y, \), az, )
- N(b2a 027d2,A) +z+ h(627)\)}]‘

Then we have v € F(y, ). It {ollows that

lu— |l < lle —y = (g(z, \) — gy, )| + [|J22 Vg, \)
— p{M(g(x,)),a1,A) = N(b1,c1,d1, A) + z + h(e1, A\)}]
— J2e0T N gy, X) — p{M (g(y, N), a2, \) — N(bs, c2,d2, )
+ 2+ ez, M| + 290N [g(y, 3) — p{M (g(y, A), a2, A)
— N(bg, ca,d2, ) + z + h(ez, \)}] — Jf""("f"")‘) lg(y, N
— p{M(g(y, ), a2, ) — N(bz, c2,dz, \) + z + h(e2, M}l

<2z —y— (g(z, A) — g(y, V)i

+ plllM (g(z, A), a1, A) — M(g(y, N), a1, A)||
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+ 1M (g(y, A), a1, A) — M(g(y, M), a2, M)|l]

+ llz =y + p(N (b1, ¢1,d1, A) — N(ba, c2,d1, )|l
+ pllIN (b2, c2,d1, A) — N (b2, ca,d2, M|

+ [[h(e1, A) = h(e2, MII] + ull fr — foll-

By the strong monotonicity and the Lipschitz continuity of g, we have

lz =y — (g(z, ) — gy, ))II?
(3.8) <z = yll* - 2(g(2, A) = 9y, ),z — y) + llg(2, X) — gy, M)
< (1-2a+ 8%z —yl*.

By the Lipschitz continuity of M in first and second argument, the Lipschitz
continuity of g, A and (3.6), we obtain

1M (g(z,A), a1, A) — M(g(y, ), a1, V)|
+1M(g(y, A), a1, A) = M(g(y, A), az, A)||
(3.9) < Milig(z,A) - g(y, Ml + Mallas — as
< Mifl|z - yl| + Mo H(A(z, 2), Ay, A)
< (Mi8+ Mada)llz — yll.
By the relaxed Lipschitz continuity with respect to the first argument of N,
the generalized pseudo-contractive of C with respect to the second argument of

N, the Lipschitz continuity of N in the first and second arguments and (3.6),
we have

(3.7)

|z —y+ p(N(b1,c1,d1,\) — N(by, ca,dp, V)|
< llz = yll* + 2p{(z — y, N (b1, c1,d1, A) — N (b, c1,d1, A))
+ (x —y, N(bg, c1,d1,\) — N(bg, ca,d1, M)}
+ P?[IN (b1, 1, d1, ) — N(ba, 1, dy, N
+ || N(ba, c1,d1, X) — N(ba, ca, d1, N)|]?

G101z~ gl12 — 200y — 0)llz — w2 + 2LV o1 — el + Nl — el
<z -yl = 20(y — o)z — yl|?
+ AINA(B(@, X), By, M) + NoH(Cla, V), Cly, W)
< o=l = 200y~ o)l — yl> + PNiAsllz - yl| + Nadollz — gl
— (1= 260y = o) + A(Nids + NaAc)llz — o]l
and

| N (b2, c2,d1, \) — N (b2, ca,da, N)|| < N3||d1 — da|
(3.11) < N3H(D(z, ), D(y, X))
< N3dpllz -yl
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By Lemma 2.2, (3.6) and the Lipschitz continuity of E and F', we have
[A(er, A) — h(ea, M| < vlles — ea|

(3.12) < vA(E(z,\), E(y, )
< vAgllz — g,
(3.13) If1 — foll < H(F(z,)), F(y,\))

< Apllz —yll.
From (3.7)-(3.13) it follows that
lu— vl < 2v1 =20+ 52 + p(M13 + M2Aa)4
++/1=2p(y — 0) + p2(N1 A + NaAg)2

(3.14) + p(NsAp + vAg) + php]||z — v
= (k+t(p))[lz -yl
=Ollz -yl

where

kE=2v1-20a+ 8%+ ulr,

t(p) = V1 -2p(y — o) + p2(N1As + N2Ac)?
+ p(M18 4+ MaAa + N3Ap + vAg),

and
0 =k+t(p).
It follows from condition (3.5) that § < 1. Hence we have

d(u> }-(yv )‘)) = UE.iT"rgl' A) HU - UH

<Olz -yl
Since u € F(z, \) is arbitrary, we obtain

sup d(u, F(y, ) < 0llz — yl|.
wEF(z, )

By using same argument, we can prove

sup d(F(z,\),v) < 0llz—yl.
veF (y,\)

By the definition of the Hausdorff metric H on C (H), we obtain that for all
(x,y,A) € Hx H x Q,

H(F(z,\), F(y,\) < 0z -y,

i.e., F(z, ) is a set-valued contractive mapping which is uniform with respect
to A € Q. By a fixed point theorem of Nadler [7], for each A\ € Q, F(z,\)
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has a fixed point z € F(z,A). By the definition of F, there exist a € A(z, \),
b€ B(z,\), ce C(z,\), d € D(z,\), e € E(x,)\), and f € F(x,)\) such that

T=x— g(x, )‘) + J;?cp(-’f’A)[g(xa )\) - p{M(g(m, >‘)’ a, /\)
—N(b,c,d,\) + z+ h(e,\)}],

and so

g(xa )‘) = J;?LP(Hf’/\)[g(x: ’\) - p{M(g(z, )‘)’ a, )‘) - N(b7 9 d’ )‘)
+ 2+ hie,A)}].

By Theorem 3.1, (z,a,b,¢,d, ¢, f) is a solution of the PGMIQVIP(2.1). Thus
we have S(\) # ¢.

(2) For each X € Q, let {z,} € S(\) and z,, — z¢ as n — oo. Then we have
Tn € F(Tn,A) for all n=1,2,.... By the proof of (1), we have

I:I(]-'(xn, A), F(zo,A)) < 0|z — zo]|-
It follows that
d(zo, F(xo, A)) < ||lzo — Zn|| + d(Tn, F(xn, X))
+ H(F(xn, A), F(zo, A))

< @+ 0)||zn — ol
—0 as n— oo

Hence, we have zo € F(zo, ) and zg € S()\). Therefore, S(A) is a nonempty
closed subset of H. O

Theorem 3.3. Under the hypotheses of Theorem 3.2, further assume that

(i) for any x € H, A - A(z,)), A = B(z,)), A = C(z,\), A — D(z, ),
A = E(z,)), X — F(z,\) are Lipschitz continuous with Lipschitz constants
la,lB,lc,lp, B, IR, Tespectively,

(ii) for any p,q,u,v,w,z,y,2 € H, A\ = M(p,q,)\), A = N(u,v,w,)),
A g(z,A), A= h(z, A), and A — JZ?CVN (2) are Lipschitz continuous with
Lipschitz constants Iy, Iy, g, Ik, Ly, Tespectively.

Then the solution set S(X) of the PGIQVIP (2.1) is a Lipschitz continuous
mapping from Q to H.

Proof. For each A, X € Q, by Theorem 3.2, S()) and S(}) are both nonempty
closed subsets. By the proof of Theorem 3.2, F(x,)) and F(z,)) are both
set-valued contractive mappings with same contraction constant 8 € (0,1). By
Lemma 2.1, we obtain

H(S()),S(\)) < sup H(F(z, \), F(z, N)).

1_0z€H
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Taking any u € F(z, )), there exist a € A(x,)), b € B(z,\), ¢ € C(z, A),
d € D(z,)), e € E(z,)\), f € F(x,)) such that
U=x-— g(za ’\) + J;?cp(.’f’A)[g(m’ )‘) - p{M(g(:v, )‘)7 a, >‘) - N(b? G d’ ’\)
+ z+ h(e,A)}].
Since A(x,)\) € C(H) and A(z,X) € C(H), there exists a € A(z, \) such that
la —a|| < H(A(z,X), Az, X)).

Similarly, there exist b € B(z,}), ¢ € C(z,)), d € D(z,X), € € E(z,)),
f € F(z,\) such that
|6 —b|| < H(B(x, \),
le—2fl < ﬁ(c(%)\),
ld ~d|| < H(D(z,
lle — &l < H (B
If =7l <H(F(-’£,

v =g —g(z,N) + J2CIN g, X) - p{M(g(z,)),a,)) — N(b,,d,N)
+ z+ h(g,\)}].

Then v € F(z, ). It follows that
(3.15)
[ — o

< llg(z, A) — gz, V)|
+ (|72 CE N g(z, A) ~ p{M (g(z, X),a,\) = N(b,¢,d, ) + z + h(e, )}]
— Joe 0TV g(z,0) — p{M(g(z, A),a,X) — N(b,¢,d, A) + z + h(e, VY|
+ 1172207 Vg(2, A) — p{M(g(w, A), 0, %) = N(b,c,d, A) + =z + e, \)}]
— J2e0I N g(, X) — p{M(g(z, X),3,A) — N(5,&,d, }) + z + h(g, )}]]
+ [172¢CT N g(2, X) ~ p{M(g(z, X),a,X) — N(b,&,d, X
— J2eCI N (2, ) — p{M(g(z, X),a,X) — N(b,E,

< llg(z,\) — g(@, )| + pllf = f)
+ lg(z, ) — p{M(g(x, X}, a,A) — N(b,c
—(g(z, ) — p{M(g(,X),3,}) - N(b,¢
+ 1A= X

< 2|lg(z, X) — g, )| + pl £ - Fl
+ ol M(g(x, )),a,)) — M(g(z, 1), a, N)]|
+ p||N(b,c,d, ) — N(b, & d, N)|| + pllh(e, X) — h(&, V)]

>\) + 2+ h(e,\)}]
1,2) + 2+ h(g M}

A) + 2 + h(e, )}

,d,
,d,\) + z + h(g,\)})]
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By the Lipschitz continuity of g, F, M and A in A, we have

(3.16) lg(z, A) = g(a, M| < LlIx = All,
G 17 = 7l < B(P(@,X), Flz, )
[M(g(z, ), a,\) — M(g(z, 5‘)3 a, 5‘)“
< HM(g(l‘, )‘)’ a, )‘) - M(g(.r, S‘)a a, )‘)” + ||M(g(x’ 5‘)? a, )‘)
(3.18) — M(g(z,N),a, M| + | M(g(z, A),a,)) — M(g(z, A),a, M)l

< Miflg(z, M) — g(z, M| + Malla — aff + Iarf|A = A
< Mylghh — M|+ Mo H(A(z, ), Az, N) + L) = Al
< (Milg + Mala+ L)X = M|
By the Lipschitz continuity of E, h in A € 0, and Lemma 2.2, we have
l1h(e, A) — h(&, M) < lIa(e, A) = h(&, V)] + |h(€, A) = h(e, V)]
< vlle—ell + Il = All
< vH(E(z,\), E(z, X)) + lp]|A = Al
(Wle +In)IIA = Al
By the Lipschitz continuity of N and B,C, D in A € Q, we have
|N(b,c,d, A) — N(b,&,d, N
< |IN(b,¢,d, A) = N(b, e, d, M| + | N(b, ¢, d, A) = N(b,c,d, )|
+ IN(b,E,d,\) — N(b,&,d, \)|| + |[N(b,&,d, \) — N(b,&,d, \)||

(3.20) < Millb—bll + Naflc— el + Na|ld — d]| + Inf|A — M|

< NiH(B(z, \), B(z, X)) + NoH(C(z, \), C(, }))

+ N3H(D(z,)), D(z, X)) + Ivl|A = Al

< (Nilp + Nalc + N3lp +In)||A = Al
It follows from (3.15)-(3.20) that
lu—v|| < [2lg + plp + p(Milg + Mala + Iy + Nilp + Nale

+ N3lp +In +vig +1)]||A = Al
< LIA=All,

(3.19)

IA

where
L =2lg+ plp + p(Mily + Mala + lpr + Nilp + Nalc
+ N3lp + Iy +vig + ).
Hence, we obtain

sup  d(u, F(z, ) < LA~ Al
u€F(x,N)
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By using a similar argument as above, we can obtain

sup d(F(x,A),v) < LA — 5\||
vEF (z,N)

It follows that
H(F(z,A), F(2, X)) < LA = X[l
By Lemma 2.1, we obtain

(S0, 5(0) < 17 1A - Al

- This proves that S{\} is Lipschitz continuous in A € .

If each mapping in Conditions (i) and (ii) is assumed to be continuous in
A € , then by similar argument as above, we can show that S(X) is also
continuous in A € 2. U
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