DOI QR코드

DOI QR Code

THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL ASYMPTOTIC STABILITY FOR A FOURTH-ORDER RATIONAL DIFFERENCE EQUATION

  • Li, Xianyi (SCHOOL OF MATHEMATICS AND PHYSICS NANHUA UNIVERSITY) ;
  • Agarwal, Ravi P. (DEPARTMENT OF MATHEMATICAL SCIENCES FLORIDA INSTITUTE OF TECHNOLOGY)
  • Published : 2007.07.30

Abstract

In this paper, the following fourth-order rational difference equation $$x_{n+1}=\frac{{x_n^b}+x_n-2x_{n-3}^b+a}{{x_n^bx_{n-2}+x_{n-3}^b+a}$$, n=0, 1, 2,..., where a, b ${\in}$ [0, ${\infty}$) and the initial values $X_{-3},\;X_{-2},\;X_{-1},\;X_0\;{\in}\;(0,\;{\infty})$, is considered and the rule of its trajectory structure is described clearly out. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is $1^+,\;1^-,\;1^+,\;4^-,\;3^+,\;1^-,\;2^+,\;2^-$ in a period, by which the positive equilibrium point of the equation is verified to be globally asymptotically stable.

Keywords

References

  1. R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992(1st edition), 2000 (2nd edition)
  2. A. M. Amleh, N. Kruse, and G. Ladas, On a class of difference equations with strong negative feedback, J. Differ. Equations Appl. 5 (1999), no. 6, 497-515 https://doi.org/10.1080/10236199908808204
  3. A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, On the recursive sequence $x_{n+1}\;=\;{\alpha}\;+\;x{n-1}/x_n$, J. Math. Anal. Appl. 233 (1999), no. 2, 790-798 https://doi.org/10.1006/jmaa.1999.6346
  4. C. Gibbons, M. R. S. Kulenovic, and G. Ladas, On the recursive sequence $x_{n+1}\;=\;(<\alpha}\;+{\beta}x_{n-1})/({\gamma}\;+\;x_n)$, Math. Sci. Res. Hot-Line 4 (2000), no. 2, 1-11
  5. S. Kalabusic and M. R. S. Kulenovic, Rate of convergence of solutions of rational difference equation of second order, Adv. Difference Equ. (2004), no. 2, 121-139 https://doi.org/10.1155/S168718390430806X
  6. V. L. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993
  7. M. R. S. Kulenovic, G. Ladas, L. F. Martins, and I. W. Rodrigues, The Dynamics of $x_{n+1}\;=\;\frac{{\alpha}={\beta}x_n}{A+Bx_n+Cx_{n-1}}$ : Facts and Conjectures, Computers Math. Appl. 45 (2003), no. 6-9, 1087-1099 https://doi.org/10.1016/S0898-1221(03)00090-7
  8. M. R. S. Kulenovic, G. Ladas, and N. R. Prokup, A rational difference equation, Computers Math. Appl. 41 (2001), no. 5-6, 671-678 https://doi.org/10.1016/S0898-1221(00)00311-4
  9. X. Li and D. Zhu, Global asymptotic stability of a nonlinear recursive sequence, Appl. Math. Lett. 17 (2004), no. 7, 833-838 https://doi.org/10.1016/j.aml.2004.06.014
  10. X. Li and D. Zhu, Global asymptotic stability in a rational equation, J. Differ. Equations Appl. 9 (2003), no. 9, 833-839 https://doi.org/10.1080/1023619031000071303
  11. X. Li and D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput. 150 (2004), no. 2, 481-492 https://doi.org/10.1016/S0096-3003(03)00286-8
  12. Tim Nesemann, Positive nonlinear difference equations: some results and applications, Nonlinear Analysis 47 (2001), no. 7, 4707-4717 https://doi.org/10.1016/S0362-546X(01)00583-1

Cited by

  1. Dynamical Properties in a Fourth-Order Nonlinear Difference Equation vol.2010, 2010, https://doi.org/10.1155/2010/679409
  2. Dynamical Properties in a Fourth-OrderNonlinear Difference Equation vol.2010, pp.1, 2010, https://doi.org/10.1186/1687-1847-2010-679409
  3. The rule of cycle length and global asymptotic stability for a third-order nonlinear difference equation vol.58, pp.1, 2009, https://doi.org/10.1007/s11587-009-0052-2
  4. A note for “On the rational recursive sequence xn+1=A+i=0kαixn-ii=0kβixn-i” vol.18, pp.1, 2012, https://doi.org/10.1016/j.ajmsc.2011.05.001