DOI QR코드

DOI QR Code

ANTI-SYMPLECTIC INVOLUTIONS ON NON-KÄHLER SYMPLECTIC 4-MANIFOLDS

  • Cho, Yong-Seung (NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES, DEPARTMENT OF MATHEMATICS EWHA WOMANS UNIVERSITY) ;
  • Hong, Yoon-Hi (NATIONAL INSTITUTE FOR MATHEMATICAL SCIENCES)
  • Published : 2007.07.30

Abstract

In this note we construct an anti-symplectic involution on the non-$K\ddot{a}hler$, symplectic 4-manifold which is constructed by Thurston and show that the quotient of the Thurston's 4-manifold is not symplectic. Also we construct a non-$K\ddot{a}hler$, symplectic 4-manifold using the Gomph's symplectic sum method and an anti-symplectic involution on the non-$K\ddot{a}hler$, symplectic 4-manifold.

Keywords

References

  1. S. Akbulut, On quotients of complex surfaces under complex conjugation, J. Reine. Angew. Math. 447 (1994), 83-90
  2. W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Springer, Heidelberg, 1984
  3. Y. S. Cho, Cyclic group actions on gauge theory, Diff. Geom. and its Applications 6 (1996), no. 1, 87-99 https://doi.org/10.1016/0926-2245(96)00009-5
  4. Y. S. Cho and Y. H. Hong, Cyclic group actions on 4-manifold, Acta. Math. Hung. 94 (2002), no. 4, 333-350 https://doi.org/10.1023/A:1015647713638
  5. Y. S. Cho and Y. H. Hong, Seiberg-Witten invariants and (anti-)symplectic involutions, Glasg. Math. J. 45 (2003), no. 3, 401-413 https://doi.org/10.1017/S0017089503001344
  6. R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527-595 https://doi.org/10.2307/2118554
  7. R. E. Gompf and T. S. Mrowka, Irreducible 4-manifolds need not be complex, Ann. of Math. (2) 138 (1993), no. 1, 61-111 https://doi.org/10.2307/2946635
  8. R. E. Gompf and A. I. Stipsciz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, 1999
  9. R. Kirby, Problems in low-dimensional topology, Edited by Rob Kirby. AMS/IP Stud. Adv. Math., 2.2, Geometric topology (Athens, GA, 1993), 35-473, Amer. Math. Soc., Providence, RI, 1997
  10. D. Mcduff, Examples of simply-connected symplectic non-Kahlerian manifolds, J. Differential Geom. 20 (1984), no. 1, 267-277 https://doi.org/10.4310/jdg/1214438999
  11. B. Ozbagci and A. I. Stipsciz, Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3125-3128 https://doi.org/10.1090/S0002-9939-00-05390-9
  12. D. Salamon, Spin geometry and Seiberg-Witten invariants, University of Warwick, October 2, 1995
  13. P. Shanahan, The Atiyah-Singer index theorem, An introduction. Lecture Notes in Mathematics, 638. Springer, Berlin, 1978
  14. A. I. Stipsciz, Manifolds not containing Gomph nuclei, Acta Math. 83 (1998), 107-113 https://doi.org/10.1023/A:1006619704466
  15. W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467-468 https://doi.org/10.2307/2041749
  16. S. Wang, Gauge theory and involutions, Oxford University Thesis (1990)