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ANTI-SYMPLECTIC INVOLUTIONS ON NON-KAHLER
SYMPLECTIC 4-MANIFOLDS

YoNG SEuNG CHO AND YooN Hi HoNG

ABSTRACT. In this note we construct an anti-symplectic involution on the
non-Kahler, symplectic 4-manifold which is constructed by Thurston and
show that the quotient of the Thurston’s 4-manifold is not symplectic.

Also we construct a non-Kahler, symplectic 4-manifold using the Gom-
ph’s symplectic sum method and an anti-symplectic involution on the
non-Kahler, symplectic 4-manifold.

1. Introduction

Let (X,w) be a closed, symplectic, 4-manifold with a symplectic structure
w. A smooth map ¢ : X — X is an anti-symplectic involution if and only if
0*w = —w and 02 = Id. If X is a Kihler surface, and ¢ is anti-holomorphic,
that is, 0,0 J = —J oo, for the complex structure J on X, we can find a Kahler
form w on X such that c*w = —w. A typical example of an anti-holomorphic
involution is a complex conjugation over a complex algebraic surface.

S. Akbulut in [9] conjectured that if X is a simply-connected, closed, sym-
plectic 4-manifold and ¢ : X — X is an anti-symplectic involution with a
smooth non-empty embedded surface as a fixed point set, then the quotient
X/o is completely decomposable, i.e.,

X/o= ﬁrCPQﬁs(WQ) or fn(S%*x S?%), forsome r,s,n€N.

In [1}, S. Akbulut showed that if X is a complex algebraic surface and o is
the complex conjugation with a real algebraic surface as fixed point set then
X /o is completely decomposable for many cases.

For a long time, it had been asked whether every closed, symplectic mani-
fold has also a Kahler structure. W. Thurston in [15] produced some examples
of a symplectic manifolds which are not Kahler. He constructed symplectic
4-manifolds with the first Betti number b; = 3. This raised the question of
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whether non-Kéhler, symplectic manifolds could be simply-connected. D. Mec-
Duff in [10] constructed simply-connected examples with b3 odd in dimensions
> 10, but the question remained open in lower dimensions, notably in dimen-
sion 4. About this problem, R. E. Gomph in [7] constructed various types of
infinite families of simply-connected symplectic manifolds, including families in
dimensions 4, 6, and 8, which are non-Kahler for a variety of different reasons.

As far as we know, no one constructs examples of anti-symplectic involutions
on non-Kahler, symplectic 4-manifolds. In Section 2, using the Thurston’s 4-
manifold and Gomph’s symplectic sum method, we construct some examples
of anti-symplectic involutions on non-Kéhler, symplectic 4-manifolds and show
that the quotient of the Thurston’s 4-manifold is not symplectic.

These constructions will be useful to understand the anti-symplectic involu-
tions over symplectic 4-manifolds associated with the Akbulut’s conjecture.

2. Construction of anti-symplectic involutions

Recall the Thurston’s non-Kahler, symplectic 4-manifold [15]. Let T' = Z2 x
Z? be the group with the non-commutative group operation such that (j’, &) o
(G, k) = (G +3", Ajk + k), where j = (j1,j2),k = (k1,k2),5" = (41, 55), k' =

(K1, kb) and
o 1 Jé
Ajr = (0 1)'

I'=7% x Z* — Diff(R*) : (j, k) — pjx

The group I' acts on R? via,

for all (4, k) € Z* x Z?, where p;i(z,y) = (z + j, Ay + k).

R* can be identified with C2 in such a way that the almost complex structure
Jo corresponds to the multiplication by 7 = v/—1.

Let wp be a Kahler form on R%. Then we can say that for all (z,y) € C?,
T =1 +1%2,y = Y1 +1y2 and

wo = %(dzdj- + dydg) = dx1dzs + dy1dys.

Then the diffeomorphism p,; preserves the canonical symplectic structure
wp on R* and the quotient X = R* /T is a compact, symplectic manifold and
m1(X) = I'. The homology group H1(X;Z) = m(X)/[[,T]| ¥ Z@®Z & Z and
so the first Betti number §;(X) = 3. Since odd dimensional betti numbers are
even over a Kahler surface, X = R*/T is a non-Kihler, symplectic 4-manifold.
For details, see [15].

Proposition 2.1. On the non-Kdhler, symplectic 4-manifold X = R*/T', the
involution o : X — X defined by o([z1, z2,y1,¥2]) = [z1, —T2,y1, —¥2), for all
(€1, %2, Y1, y2] € X, is anti-symplectic for a symplectic structure w on X.
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Proof. For the Kahler structure wy on R* and for all (j,k) € T, since we have
P;kwo = P;k(dﬂfldb + dy1dys)
= d(z1 + j1)d(x2 + J2) + d(y1 + jayz + k1)d(y2 + k2)
= dzidzrs + dyrdys + dj1(dxe + dj2) + dja(—dz1 + y2(dys + dks))
+ dk1(dy2 + dk2) + dka(—dy1 — jady2),
the Kahler form wg on R* descends to a symplectic structure w = dzidzs +
dy1dys on X = R4/T.
Consider an involution g : R* — R? such that
00(%1,22,Y1,Y2) = (¥1, —&2, 41, —y2) for all (21,22,91,92) € R™.

Then we have cfwy = —wg and og is an anti-sympletic involution for the Kihler
form wy.

For all j = (j1,j2),k = (k1,k2),5" = (j1,53), kK = (K}, k3) € T, and for all
(z1,22,91,¥2) € R*, we have

a0 © pik(T1, T2, Y1, y2) = (T1 + J1, —T2 — Jo, Y1 + Joyo + k1, —y2 — k2),
Pjk © 00(T1, T2, Y1,Y2) = (T1 + J1, —@2 + Jb, y1 + Y2is + k1, —y2 + ky).

Thus we conclude that p;ix 00oo(21, 22, Y1, y2) and ggop;k(z1, T2, y1,y2) descend
to the same element [z1,—2,y1,—y2] on X and so there is a well-defined
involution o over X = R*/T" defined by

0: X — X :[z1,m2,y1,¥2] — (@1, —%2, Y1, —Y2)-

Since 0*w = o*(dz1dzs + dy1dys) = —dx1dzy — dy1dys = —w, o is an anti-
symplectic involution for the symplectic structure w on the Thurston’s non-
Kahler, symplectic 4-manifold R*/T. O

Let X' = X/o be the quotient of X = R*/I" under the anti-symplectic
involution ¢ in Proposition 2.1.

Proposition 2.2. The quotient X' = X /o is not a symplectic 4-manifold.

Proof. By Proposition 2.1, there is an anti-symplectic involution ¢ : X — X
defined by

o([z1, 22,41, 32]) = [21, 22,91, ~32]-
Then the fixed point set X7 of ¢ is
X7 ={[z1, @2, 91, 92] € X | [w1,22,1,72] = [21, —T2, 91, —92)} =T
Since the Euler characteristic x(X) and the signature sign(X) of X are
x(X) = sign(X) =0,

X is a spin 4-manifold with b3 (X) = 2 and the canonical class K x of X satisfies
K% =0.
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Since X = R*/T" is a double cover of X’ branched along the torus 7%, by
[16] we have

x(X) = 2x(X") — x(T?), sign(X) = 2sign(X’) — T? - T>.

Then x(X’) = sign(X’) = 0 and so b3 (X’) = 0. Thus we conclude that there
is no symplectic structure over the quotient X'. O

Remark. Let X be a smooth 4-manifold on which a finite group G with |G| = p
acts smoothly with a 2-dimensional Riemann surface ¥ as its fixed point set
and let X’ be its quotient space. Let 7 : X — X’ be the projection map. Then
the quotient X’ has a smooth structure that 7 is smooth.

The Euler characteristic x(X’) and the signature sign(X’) of X’ are

2 _
X(X) = () + (= DX(E),  sign(X") = ~(sign(X) + F=

%5

For details, see [3].

For the second construction of an anti-symplectic involution on a non-Kéhler,
symplectic 4-manifold, we need to introduce a Dolgachev surface.

A Dolgachev surface is the result of performing two logarithmic transforma-
tions on the fibers of the basic elliptic surface E(1) which is CP? 119@2 as being
equipped with an elliptic fibration.

From now on let X; and X, be simply-connected Dolgachev surfaces given
by relatively prime multiplicities p;,¢; > 1,1 =1, 2.

Let J; be the complex structure on X; and m; : X; — CP! be the elliptic
fibration, 1 =1, 2.

Let D, be a disk in R? with radius ¢ = % We identify a small tubular neigh-
borhood N (F;) of a generic fiber F; (Kahler torus) of X; with T2 x D, so that
the fibration correspond to projection onto D, and the canonical orientations
of T? and D, map to the complex orientation.

Consider a complex conjugation o; : X; — X; such that o;(F;) = F] and
m; 00; = moc, where ¢ : CP* — CP! is the complex conjugation and F is
another generic fiber with N(F;)) "N N(F/)=0,i=1,2.

Then there is a Kéhler form w; on X; such that ofw; = —w;, ¢ =1,2.

Remark. We can assume that there is a complex conjugation o; on the Dol-
gachev surface X; which satisfies the above conditions, i = 1, 2.

For example, we take two generic cubics pg and p; in CP? (intersecting each
other in distinct 9 points Py, ..., Py) and construct the corresponding pencil of
curves {topo + t1p1| [to : t1] € CP'}. Then {topo + t1p1] [to : t1] € CP'} is a
one-sheet cover of CP? — {P1,..., P}

For all Q € CP? — {P,,..., Py}, there is unique cubic topy + t1p; which
passes through @ and we define a map f : CP? — {P},..., Py} — CP' by
F(Q) = [to : t1]. For details, see [8].
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Over the elliptic fibration p : CP2ﬁ9@2 — CP!, we consider a complex
conjugation oy : CIP’Zﬁ9@2 — CP? ﬁ9@2 which covers the complex conjugation
over CP!.

The complex conjugation o sends Q to Q and the cubic fopg + f1p1 passes
through @ and f(Q) = [fo : {1] € CP.

Let [to : t1] be a generic point in CP'. Then p~!([to : t1]) is a generic torus.
If [to : 1] is a generic point and [fy : £1] # [to : t1] then p~I([fo : #1]) is another
generic torus F” and for small tubular neighborhoods of F and F’, we may
assume that N(F) N N(F') = 0.

Over the blowing up part CIPzﬁQ@rZ — (CP? — {Py,...,Py}), we consider a
canonical complex conjugation over TP .

Since the Dolgachev surface X; is the result of performing two logarithmic
transformations on the generic fibers of the basic elliptic surface E(1), for the
multiplicities of the two logarithmic transformations the complex structure
and elliptic fibration extend over the Dolgachev surface X;, i = 1,2. Thus the

complex conjugation o; on X; acts similarly with the action of the o9 on E(1),
i=1,2.

Lemma 2.3. For any such anti-holomorphic involution o;, there is a tubular
neighborhood N(F;) of a generic fiber F; such that o; sends N(F;) to a tubular
neighborhood N(F}) of F!, 1 =1,2.

Proof. Since N(F;) = F; x D, each point z € N(F;) can be written by z =
((ewl,eie?),rew?’) € F; x D, where (e¥1,¢%2) ¢ F; and re®¥® € D, with 0 <
r<e0<6< 2.

For all z € N(F;), the complex conjugation o; on N(F}), i = 1,2, acts as

Ui(((eiol,ewg),rem)) — (o.i(ei&’ewg),re—ieg) — ((e—iol’e—iog),m—iea)
€ F/ x D, = N(F)).
|

The fibration on X; determines a canonical normal framing of F;, so there
is a fiber-orientation reversing bundle isomorphism v; : N(Fy) — N(F),
respecting the given framings and an orientation preserving diffcomorphism
¢1: N(Fy) — F — N(F,) — F> by composing 9, with the diffeomorphism

fir— Ve —r2 0<r<e

that turns each punctured normal fiber inside out.
Let X144, X2 be the smooth, closed, oriented 4-manifold obtained from (X; —
Fl) I (X2 - Fg) by using (251 to identify N(Fl) — F1 with N(FQ) — Fg.
Indeed, X1fl¢, X2 can be obtained from the compact manifolds X; — N (F;)
and X, — N(F;) by gluing along the boundaries d(X; — N{F})) = F; x 8D,
and 0(X; — N(F2)) = F, x 8D, using the map

idr2 x (complex conjugation) : S* x §1 x §1 — St x S x St
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Then X144, X2 is known to be a simply-connected, elliptic surface with Euler
characteristic 24. For details, see Chapter 3 in [8].

However, R. E. Gomph in [6] constructed non-Kéhler, simply-connected,
symplectic 4-manifolds X1fi4: X2 by a slight modification @} of ¢1. He didn’t
glue by the fiber preserving map ¢;. Instead, he composed ¢; with a cyclic
permutation of the three factors F; x S = §* x S x §? before gluing.

Let p: F; xS — F, x S! be the cyclic permutation defined by p(z1, 2, z3) =
(3,21, x2) for all (x1,z2,73) € FA x S'. Then we have

#(@) = GL((e™,€%), 76 ™)) = po (e, ), re®))
= Pl((€%, %), /& —TPe ) = (7, %),/ — re)

and the twisted gluing map ¢} is given by the matrix

0 01
N=|1 020
010

with respect to the corresponding basis for H(F; x S*;Z), i = 1,2.

Let X1{¢; X2 be the smooth, closed, oriented 4-manifold obtained from (X; —
Fl) I (X2 - F2) by using ¢'1 to identify N(Fl) - Fl and N(Fz) - FQ.

By [7], Xiflg; X2 is the 4- manifold K (p1,q1;1,1; p2, g2) which is simply-
connected, not diffeomorphic to any elliptic surfaces for any relatively prime
multiplicities p;, g; > 1, ¢ = 1,2. For details, see [7].

As above ¢y, the fibration on X; determines a canonical normal framing of
oi(F;) = F], so there is a fiber-orientation reversing bundle isomorphism ) :
N(F{) — N(F3), respecting the given framings and an orientation preserving
diffeomorphism ¢, : N(F|) — F{ — N(Fj) — F; by composing 1 with the
diffeomorphism f. As the same constructions of ¢/, we consider a twisted gluing
map ¢5 =po ¢o: N(F])— F{ — N(Fy) — F;.

Let X1f4 4, X2 be a smooth, closed, oriented 4-manifold obtained from
Xufo, X2 — (F{ 11 F})
by using ¢} to identify N(F}) — F| and N(F3) — Fj;.
Proposition 2.4. Xiflg 4 X2 is a non-Kdhler, symplectic 4-manifold.

Proof. Since X1flg; 4, X2 is obtained from the non-Kéhler, symplectic 4-mani-
fold X1f4; Xo by deleting N(F7) IT N(F;) and by gluing along the boundaries
F{ x 8D, and F; x 0D, by the map ¢4, X1l 4, X2 is not diffeomorphic to any
elliptic surfaces.

Let w; be the Kahler form over the Dolgachev surface X;, ¢ =1, 2.

By using the same argument with Theorem 1.3 in [6], for any choice of the
diffeomorphism ¢} : N(F]) — F| — N(F}) — F}, there is a symplectic structure
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w on X1fg; 4. X2 defined by
Wi X — (N(E)TIN(F)),i=1,2,
w=qwotin  (N(F1)— Fi)y, (N(F2) — F2),
wo + tn’ (N(FY) — F)lg, (N(Fy) ~ F),

where t € (0,to] for sufficiently small ty. The n and 7' are closed 2-forms
compactly supported in N(F3) and N(F}) respectively and they are Poincaré
dual to [F3] € Hy(X2;R) and [F}] € Ha(X2;R) respectively.

The Euler characteristic and the signature satisfy

X(X1fgr 0y X2) = x(X1) + x(X2) = 24,
sign(X1tig, ¢, Xa) = sign(X;) + sign(X3) = —16.
d

Proposition 2.5. There is an anti-symplectic involution on the non-Kdhler,
symplectic 4-manifold X1y 4 Xa-

Proof. For all z = ((e*%,e¥2),re'%) € N(F,)— Fy and 2’ = ((€*, €¥2), re?s)
EN(F])-F{,0<r<¢ 0<86,9 <2m, we have

o1(z) = ¢y(a1(z)) on (N(F)) — F)tg, (N(F;) — Fy),
o1(z’) = ¢i(01(z")) on (N(F1) — Fi)tg (N(F2) — F).

To show that there is an anti-symplectic involution on Xifg; 4 X2 induced
from the complex conjugations o; on X;, i = 1,2, we have to prove that

01(z') = ¢1(01(2")) = 02(¢a(a")) over (N(F1)— Fi)ig; (N (F2) — Fo),
1(z) = #5(01(z)) = 02(¢1(x)) over (N(F]) — F)tg, (N(F3) — Fy).
Since we have
¢’2(01(r))=¢>’2(01((( 1, e%%),re’))) = ¢ (((
= (€%, e7™), Ve = r2e7), 03¢ (2)
= oz(<(e*“’3,e’91>,¢e2_—7 ) = (e, e7%), Ve —r2e7%),

—191 —102),re—i93))

o

and
$1(01(2) = $1(o1 (€™, €72), ™)) = ¢ (((e7",€772),re ™))
= ((e"%,€7), Ve? — r2e™2), 0 (¢ ("))
oa(((e7"%, €%1), Ve —r2ei?2))
- ((ews,e—wl)’ me—wg)’
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we conclude that there is a well-defined involution ¢ on X 1114,/1 ) X5 such that
o; Xl—(N(.F,)HN(.FZI)) CX1ﬁ¢/l7¢/2X2,i= 1,2,
o= o1(z') = ga(¢h(2"))  (N(F1) — Fi)lig, (N(F2) — F2),
o1(z) = o2(¢i(2))  (N(FY) — F])e, (N(F3) — Fy),
for all z € N(Fy) — Fy and ¢’ € N(F{) — Fy.
For the symplectic structure w on Xiflg; ¢: X2 ,
o'w = ojw; = —w; = —w on X; — (N(F;) IN(F])) C Xiflgr ¢, X2, =1,2.
For all x € N(F) — Fy, we have
o*w(z) = ojwr(z) = —wi(z) = —w(z).
Also
o*w($)(z)) = o5 (w2 + tn) (¢} (z))
for all t € (0,to]. Since 7 is Poincaré dual to [F3] in H2(X2;R), n can be written
by .
n = dysdys
for all ((y1,v2), (y3,94)) € Fa x (De — {0}). Then y3 = rcos@ and y4 = rsind

for the polar coordinate (r,8) € D, — {0}, 0<r <€ 0< 80 <27,
Then we have

05(n) = 03 (dysdys) = o5d(r cos §)d(r sin )
= d(r cos(—0))d(r sin(—0)) = —d(r cos §)d(r sin§) = —dyadys = —1.

Thus we conclude that

o3 (w2 + tn) (¢ (2)) = ~ (w2 + tn)(¢1(2)) = —w (¢ (2))-
From the above equations, 0*w = —w on (N(F1) — F1)ig; (N(F2) — F»).
Similarly, for all 2’ € N(F]) — Fy,
c*w(z') = ofun (@) = —w1 (7)) = —w(z'),
o w(¢y(2')) = o3 (w2 + tn')(d2(c"))
= —wa(¢(a)) — tn' (¢(a")) = —w(d(a")).
The above equations imply that c*w = —w on (N(F]) — Fi)fg, (N(Fy) —

F}). Thus o is an anti-symplectic involution on the non-Kahler, symplectic
4-manifold X4 4; X2 for the symplectic structure w. O

We can contrast with the anti-symplectic involution in Proposition 2.5 with
an anti-holomorphic involution over an elliptic surface.

Example 2.1. Let X; and o; be as in Proposition 2.5, ¢ = 1,2. Now consider
an elliptic surface Xif4, X2 obtained by the fiber sum ¢ : N(Fy) — Fy —
N(F,) — F, (instead of ¢}) of the Dolgachev surfaces X; and X, which is
known to admit a K&hler structure.



ANTI-SYMPLECTIC INVOLUTIONS 765

Let X144,,4,X2 be the smooth, closed, oriented 4-manifold obtained from
X1fg, Xz — (F{ 1 F3)

by using ¢2 to identify N(F]) — F{ and N(Fj) — F}.

Then X114, 4,X2 is an elliptic surface over T2 with the first Betti number
by = 2. At the level of smooth manifolds, this method is easily recognized as
the technique producing new elliptic surfaces from old ones.

Since ¢1 and ¢, are fiber preserving maps, there is an anti-holomorphic
involution 7 on the elliptic surface X1f4, 4, X2 such that

oi Xi — (N(F)LIN(F))) C X1fpy ¢, X2,0=1,2,
T=4 01(2') = 02(2(a))  (N(F1) — F)ie,(N(F2) - Fa),
01(z) = 02(¢1(x))  (N(F{) = F{)s, (N (F3) — F3),
for all x € N(Fy) — Fy and 2’ € N(F]) — Fj.
For the complex structure J on X1y, ¢, X2, 7v0J = —J o7y, that is, 7 is anti-
holomorphic. However, for the anti-symplectic involution ¢ in Proposition 2.5,

since there is no complex structure on X3 #47,4, X2, 0 is not an anti-holomorphic
involution.
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