Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration

활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성

  • Seo, In-Suk (Gyeonggi-do Institute of Health and Environment) ;
  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter) ;
  • Choi, Young-Ik (Department of Environmental Engineering, Silla University) ;
  • Ahn, Wook-Sung (Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Chung-Kil (Department of Environmental Engineering, Pukyong National University)
  • 서인숙 (경기도 보건환경연구원) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 최영익 (신라대학교 환경공학과) ;
  • 안욱성 (요업기술원) ;
  • 박청길 (부경대학교 환경공학과)
  • Published : 2007.02.28

Abstract

Coal-, coconut- and wood-based activated carbons and anthracite were tested for an adsorption and biodegradation performances of nitrogenous chlorinated by-products such as chloropicrin, DCAN, DBAN and TCAN. In early stage of operations, an adsorption performance was a main mechanism for removal of nitrogenous chlorinated by-products, however as increasing populations of attached bacteria, the bacteria played a major role in removing nitrogenous chlorinated by-products in the activated carbon and anthracite biofilter. It was also investigated that the compounds were readily subjected to biodegrade. Whilst the coal- and coconut-based activated carbons were found most effective in adsorption of the compounds, the anthracite was worst in adsorption of the compounds. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria were inhibited for removal of the compounds at temperatures below $10^{\circ}C$. The attached bacteria were more active at higher water temperatures$(20^{\circ}C\;<)$ but less active at love. water temperature$(10^{\circ}C\;>)$. The removal efficiencies of the compounds obtained using coal-, coconut- and wood-based activated carbons and anthracite were directly related to the water temperatures. In particular, water temperature was the most important factor for removal of the compounds in the anthracite biofilter because the removal of the compounds depended mainly on biodegradation. Therefore, the main removal mechanism of the compounds the main mechanism on the removal of the compounds using activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that using coal-based activated carbon is the best for removal of nitrogenous chlorinated by-products in the water treatment.

활성탄 공정에서 chloropicrin, DCAN, DBAN 및 TCAN과 같은 질소계 염소 소독부산물의 제거기작은 운전초기에는 흡착이 높은 비중을 차지하나 부착미생물의 활성이 중진되면서 부착미생물에 의한 생분해와 흡착에 의해 제거되었으며, 이들 물질들은 생분해능이 큰 물질들로 조사되었다. 입상활성탄 재질별 chloropicrin, DCAN, TCAN 및 DBAN의 제거 특성은 석탄계와 야자계 재질의 활성탄에서 제거율이 높았고, 목탄계는 상대적으로 낮은 제거능을 보였으며, 안트라사이트 biofilter에서 가장 낮은 제거능을 보였다. 활성탄 재질별 부착 미생물의 생체량과 활성도는 석탄계가 가장 높았고, 야자계, 목탄계, 안트라사이트 순으로 나타났으며, 수온 변화에 따른 chloropicrin, DCAN, TCAN 및 DBAN의 제거 특성은 수온이 $10^{\circ}C$ 이하로 저하될 경우 부착 bacteria의 생체량과 활성도 감소로 제거율이 감소하였다. 안트라사이트를 이용한 생물여과 공정은 수온의 변화에 아주 민감하게 변하는 양상을 나타내었으며, 이는 부착 bacteria에 의한 직접적인 생물분해가 주 제거 메카니즘이기 때문인 것으로 나타났다. Chloropicrin, DCAN, TCAN 및 UBAN과 같은 질소계 염소소독부산물들의 유입농도가 높은 경우 이들의 제거시에는 수온의 영향이 매우 중요하며, 흡착능이 소진된 활성탄이나 흡착능이 없는 여재를 사용한 생물여과 공정에서는 수온이 낮은 동절기에는 이들의 유출 가능성이 있었다.

Keywords

References

  1. Zavaleta, J. O., Hauchman, F. S., and Cox, M. W., 'Epidemiology and toxicology of disinfection by-products,' Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 95 -117(1999)
  2. Craun, G. F., Bull, R. J., Clark, R. M., Doull, J., G abow, W., Marsh, G. M., Okun, D. A., Regli, S., Sobsey, M D., and Symons, J. M., 'Balancing chemical and microbial risks of drinking water disinfect on. part I. benefits and potential risks,' Water Supply: Research & Technology-Aqua, 43, 192-199(1994)
  3. Fawell, J., Robinson, D., Bull, R., Birnbaum, L., Bman, G. Butterworth, B., Daniel, P., Galal-Gorchev, H., Hauchman, F , Julkunen, P., Klaassen, ,c Krasner, S., Orme-Zavaleta, J , Rief, J., and Tardiff, R., 'Disinfecon by-products in drinking water: critical issues in health effects research,' Environ. Health Perspect., 105(1), (1997)
  4. Hargette, P., Budd, G., and Cline, M., 'Strategies at Charleston CPW for compliance with DBP regulations,' Proceedings of AWWA 2004 Annual Conference, June 13 -17, Orlando, Florida(2004)
  5. Richardson, S. D., 'Disinfection by-products and other emerging contaminants in drinking water,' Trends in Analytical Chemistry, 22(10), 666-684(2003) https://doi.org/10.1016/S0165-9936(03)01003-3
  6. Babcock, D. V. and Singer, P. C., 'Chlorination and coagulation of humic and fulvic acids,' J. AWWA, 71(3), 149(1979)
  7. Keith, L. H., Hall, R. C., Hanisch, R. C., Landolt, R. G., and Henderson, J. E., 'New methods for analyzing water pollutants,' Water Sci. Technol., 14, 59-71(1982) https://doi.org/10.2166/wst.1982.0087
  8. Muller, u., 'THM in distribution systems,' Water Supply, 16(3-4), 121-131(1998)
  9. Singer, P. C., 'Humic substances as precursors for potentially harmful disinfection by-products,' Water Sci. Technol., 40(9), 25 - 30(1999)
  10. Yang, X. and Shang, c., 'Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia and bromide,' Environ. Sci. Technol., 38(19), 4995-5001(2004) https://doi.org/10.1021/es049580g
  11. Bull, R. J. and Robinson, M., 'Carcinogenic activity of haloacetonitrile and haloacetone derivatives in the mouse skin and lung,' In Water Chlorination, Chemistry, Environmental Impact and Health effects, 5, pp. 221-227 (1983)
  12. Bull, R. J., Bull, M., Reckhow, D. A., 'Use of quantitative structure toxicity relationships(QSTR) to fyitnedi disinfection by-products of potential health importance,' Proceedings of AWWA Water Quality Technology Conference, San Antonio, U.S.A.(2004)
  13. Krasner, BS. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M., and Aieta, E. M., 'The occurrence of disinfection by-products in U.S. drinking water,' J. AWWA, 81(8), 41(1989)
  14. Oliver, B. G., 'Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors,' Environ. Sci. Technol., 17(2), 80(1983)
  15. Ueno, H., Moto, T., Sayato, Y., and Nakamuro, K., 'Disinfection by-products in the chlorination of organic nitrogen compounds: by-products from kynurenine,' Chemosphere, 33(8), 1425 -1433(1996) https://doi.org/10.1016/0045-6535(96)00281-0
  16. Yavich, A A and Masten, S. J., 'Use of ozonation and FBT to control THM precursors,' J. AWWA, 95(4), 159-171(2003) https://doi.org/10.1002/j.1551-8833.2003.tb10342.x
  17. Page, D. W., van Leeuwen, J. A, Spark, K. M., Drikas, M, Withers, N., and Mulcahy, D. E., 'Effect of alum treatment on the trihalomethane formation and bacterial regrowth potential of natural and synthetic waters,' Water Res., 36, 4884 - 4892(2002) https://doi.org/10.1016/S0043-1354(02)00218-X
  18. Vel Leitner, N. K., De Laat, J., Dore, M., and Suty, H H., 'The use of CIO_2 in drinking water treatment: formation and control of inorganic by -products(CIO_2, CIO_3),' Disinfection By-products in Water Treatment: the Chemistry of Their Formation and Control, Minear, R. A. and Amy, G. L(Eds), CRC Press, Boca Raton, pp. 393- 407(1996)
  19. Reckhow, D. A,. 'Control of disinfection by-product formation using ozone,' Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed) , American Water Work Association, Denver pp. 179-204(1999)
  20. Tung, H. H., Unz, R. F , and Xie, Y. F., 'The effects of adsorption isotherm testing conditions on GAC bed life estimation,' Proceedings of 2003 AWWA Annual Conference, June 15-19, Anabeim, California (2003)
  21. Wu, H. and Xie, Y. F., 'Effects of empty bed contact time and temperature on the removal of haloacetic acids using biologially activated carbon,' Proceedings of 2003 AWWA Annual Conference, June 15 -19, Anaheim, Califomia(2003)
  22. Speth, T. F. and Miltner, R. ,J., 'Adsorption capacity of GAC for synthetic organics,' J. AWWA, 90(4), 171-174(1998) https://doi.org/10.1002/j.1551-8833.1998.tb08420.x
  23. 손희종, 노재순, 배석문, 김상구, 강임석, '활성탄 공정에 서의 염소 소독부산물 제거특성,' 대한환경공학회지, 27(7), 762 - 770(2005)
  24. 한국표준협회 , KS 활성탄 시험방법, KS M 1802(1998)
  25. 환경부, 수처리제의 기준과 규격 및 표시기준, 환경부 고시 제1999-173호(1999)
  26. Snoeyink, V. L., 'Adsorption of organic compounds,' In Water Quality and Treatment: a Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw-Hill Inc., New York, pp. 781 -855(1990)
  27. US EPA Method 551.1, Determination of Chlorination Disinfection ,Byproducts, Chlorinated Solvents, and Halogenated , Pesticides/Herbicides in Drinking Water by Liquidliquid Extraction and Gas Chromatography with Electron Capture Detection, National Exposure Research Laboratory, Cincinnati, OHIO 45268(1995)
  28. 長澤, '粒狀活性炭表層のぢける微生物の動向,' 第41 回 日本水道硏究發表會 發表論文集, 1 - 3(1990)
  29. APHA, AWWA, WEF, 'Heterotrophic plate count,' Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31 - 9-35(1995)
  30. Fuhrman, J, A. and Azam, F., 'Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results ', Mar. Biol., 66, 109 - 120(1982) https://doi.org/10.1007/BF00397184
  31. Parsons, T. R., ,Maita Y., and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984)
  32. Bell, R. T., Ahlgren, G. M., and Ahlgren, I., 'Estimating bacterioplankton production by the $3_H$ thymidine incorporation in a eutrophic Swedish Lake,' Appl. Environ, Microbiol., 45, 1709-1721 (1983)
  33. Zhou, H. and Xie, Y., 'Using BAC for HAA removal part 1: batch study,' J. AWWA, 94(4), 194-200(2002) https://doi.org/10.1002/j.1551-8833.2002.tb09463.x
  34. Xie, Y. and Zhou, H., 'Using BAC for HAA removalpart 2: column study,' J. AWWA, 94(5), 126- 134(2002) https://doi.org/10.1002/j.1551-8833.2002.tb09476.x
  35. 손희종, 박홍기, 이수애, 정은영, 정철우, '생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성,' 대한환경공학회지, 27(12), 1311 - 1320(2005)