DOI QR코드

DOI QR Code

Stability Bounds of Delayed Time-varying Perturbations of Discrete Systems

이산시스템에서 시간지연을 갖는 시변 상태 지연 섭동의 안정 범위에 관한 연구

  • 이달호 (경원대학교 전자전기정보공학부) ;
  • 한형석 (경원대학교 전자전기정보공학부)
  • Published : 2007.02.01

Abstract

The stability robustness problem of linear discrete-time systems with delayed time-varying perturbations is considered. Compared with continuous time system, little effort has been made for the discrete time system in this area. In the previous results, the bounds were derived for the case of non-delayed perturbations. There are few results for delayed perturbation. Although the results are for the delayed perturbation, they considered only the time-invariant perturbations. In this paper, the sufficient conditions for stability can be expressed as linear matrix inequalities(LMIs). The corresponding stability bounds are determined by LMI(Linear Matrix Inequality)-based algorithms. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed results.

Keywords

References

  1. J. Richard, 'Time-delay systems:an overview of some recent advances and open problems,' Automatica, vol. 39, pp. 1667-1694, 2003 https://doi.org/10.1016/S0005-1098(03)00167-5
  2. L. Dugard and E. I. Verriest, Stability and Control of Time-delay Systems, Springer-Verlag, 1998
  3. M. L. Ni and M. J. Er, 'Stabilityof linear systems with delayed perturbations: An LMl approach,' IEEE Trans. of Circuits and Systems-I:Fundamental Theory and Applications, vol. 49, no. 1, pp. 108-112, 2002 https://doi.org/10.1109/81.989065
  4. Z. H. Shao, 'Stability bounds of singularly perturbed delay system,' IEE Proc., Control Theory Appl., vol. 151, no. 5, pp. 585-588, September 2004 https://doi.org/10.1049/ip-cta:20040927
  5. T. Su, C .Y. Lu, and J. S. Tsai, 'LMl approach to delay- dependent robust stability for uncertain time-delay systems,' IEE Proc., Control Theory Appl., vol. 148, no. 3, pp. 209-212, May 2001 https://doi.org/10.1049/ip-cta:20010413
  6. J. H. Kim, 'Robust stability of linear systems with delayed perturbations,' IEEE Trans. of Automatic Control, vol. 41, no. 12, pp. 1820-1822, 1996 https://doi.org/10.1109/9.545749
  7. T. Ooba and Y. Funahashi, 'Comments on 'Robust stability of linear systems with delayed perturbations',' IEEE Trans. of Automatic Control, vol.44, no. 8, pp. 1582-1583, 1999 https://doi.org/10.1109/9.780426
  8. H. I. Kang, 'Comments on 'Robust stability of linear systems with delayed perturbations',' IEEE Trans. of Automatic Control, vol. 44, no. 8, pp. 1612, 1999 https://doi.org/10.1109/9.780435
  9. S. Chen and J. Chou, 'D-stability robustness for linear discrete uncertain singular systems with delayed perturbations,' International Journal of Control, vol. 77, no. 7, pp. 685-692, May 2004 https://doi.org/10.1080/00207170410001715031
  10. T. Su et. al., 'Correction to robust D-stability for linear uncertain discrete time-delay systems,' IEEE Trans. of Automatic Control, vol. 48, no. 4, pp. 709, 2003 https://doi.org/10.1109/TAC.2003.809766
  11. T. Su and W. Shyr, 'Robust D-stability for linear uncertain discrete time-delay systems,' IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 425-428,Feb. 1994 https://doi.org/10.1109/9.272350
  12. T. S. Li, J. Chiou, and F. Kung; 'Stability bounds of singularly perturbed discrete systems,' IEEE Transactions on Automatic Control, vol. 44, no. 10, pp. 1934-1938, Oct. 1999 https://doi.org/10.1109/9.793780
  13. H. Trinh and M. Aldeen, 'Robust stability of singularly perturbed discrete-delay systems,' IEEE Trans. of Automatic Control, vol. 40 no. 9, pp. 1620-1623, September 1995 https://doi.org/10.1109/9.412632
  14. E. I. Verriest and A. F. Ivanov, 'Robust stability of delay-difference equations,' Proceedings of the 34th IEEE Conference on Decision and Control, vol. 1, pp. 386-391, 13-15 Dec. 1995
  15. 송성호, 박섭형, 이봉영, '시변 시간 지연을 갖는 불확실한 이산 시간 선형시스템의 견실 안정성,' 제어.자동화.시스템공학 논문지, vol. 5, no. 6, pp. 641-646, August 1999
  16. M. Halicka and D. Rosinova, 'Stability robustness bound estimates of discrete systems : analysis and comparison,' International Journal of Control, vol. 60, no. 2, pp. 297-314, 1994 https://doi.org/10.1080/00207179408921466
  17. E. Yaz and X. Niu, 'Stability robustness of linear discrete-time systems in the presence of uncertainty,'International Journal of Control, vol.50, no. 1, pp.173-182, 1989 https://doi.org/10.1080/00207178908953356
  18. S. R. Kolla, R. K. Yedavalli, and J. B. Farison, 'Robust stability bounds on time-varying perturbations for state-space models of linear discrete-time systems,' International Journal of Control, vol. 50, no. 1, pp. 151-159, 1989 https://doi.org/10.1080/00207178908953354
  19. M. E. Sezer and D. D. Siljak, 'Robust stability of discrete systems,' International Journal of Control, vol. 48, no. 5, pp. 2055-2063, 1988 https://doi.org/10.1080/00207178808906305
  20. E. Yaz and X. Niu, 'Robustness of discrete-time systems for unstructured stochastic perturbations,' IEEE Transactions on Automatic Control, vol. 36, no. 7, pp. 867-86 https://doi.org/10.1109/9.85068
  21. 김병수, 한형석, 이장규, '시변 섭동의 안정범위에 관한 연구,' 제어.자동화.시스템공학 논문지, vol. 3, no. 1, pp. 17-22, January 1997
  22. R A. Hom and C .R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985
  23. S. P. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities insystem and control theory, Siam, 1994