Changes in Esterase Isozyme Activity After Pesticides Treatment in Digestive Juice of Monochamus saltuarius (Gebler) Adult

북방수염하늘소(Monochamus saltuarius) 성충의 살충제 처리에 따른 소화 효소의 활성 변화

  • Park, Yong-Chul (Department of Plant Biotechnology Program, Division of Biotechnology, School of Biotechnology, Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Cho, Sae-Youll (Division of Metabolism, Endocrinology, and Diabetes, University of Michigan)
  • Published : 2007.09.30

Abstract

Esterase isozymes were investigated from digestive juice of M. saltuarius adults after pesticide treatment. Twelve esterase isozymes were separated on 12% native-PAGE gel and stained with three different substrates(${\alpha}$-naphthyl acetate, ${\beta}$-naphthyl acetate, and ${\alpha}$-naphthyl butyrate). Interestingly, the isozyme of Est1(${\alpha}$-naphthyl acetate) was strongly inhibited by the carbofuran and methomyl. The Est1 activity was completely inhibited by the chlorpyrifos and partially inhibited by methidation about 70 %. In addition, eserine suppressed esterase isozyme activities of Est1 about 70% and isozyme activities of Est2, Est3, and Est4 were weakly inhibited. ${\alpha}$-pinene did not suppressed esterase isozyme activities but activities of esterases were very weakly inhibited in camphor and bornyl acetate.

북방수염하늘소(M. saltuarius) 성충 장(gut)내에 존재하는 소화액에 대한 에스테라제(esterase)의 활성 변화를 in vitro에서 조사하였다. ${\alpha}$-naphthyl acetate와 ${\alpha}$-naphthyl butyrate 기질을 이용한 실험에서는 4개의 밴드가 관찰되었다. Carbofuran과 methomyl을 비교 처리한 결과 methomyl에서 강한 효소활성 저해가 관찰되었다. 특히 Est1은 carbofuran과 methomyl에 의해 모두 저해되는 것으로 나타났다. Chlorpyrifos, methidation, phenthoate를 비교 처리한 결과 chlorpyrifos에 의해 모든 밴드들이 저해되는 것을 볼 수 있었다. 특히 Est1은 chlorpyrifos에 의해 효소활성이 완전히 저해되었고, methidation 처리시 약 70% 정도의 효소활성이 저해 되었다. Eserine을 처리한 결과 Est1은 약 70% 정도의 활성 저해를, Est2, Est3, Est4에서는 미미한 효소활성 저해가 나타났다. ${\alpha}$-pinene에서는 뚜렷한 효소활성 저해는 관찰할 수 없었으나 bornyl acetate와 camphor에서는 미미한 효소활성 저해가 관찰되었다.

Keywords

References

  1. Calaf, G. M., E. Parra and F. Garrido (2007) Cell proliferation and tumor formation induced by eserine, an acetylcholinesterase inhibitor, in rat mammary gland. Oncol. Rep. 17(1):25-33
  2. Cho S. Y., Y. M. Park and Y. C. Park (2007) Evalution of toxicity of 23 pesticides against Harmonia axyridis (Coleoptera: Coccinellidae) eggs and adults: Effect on esterase activity, hatchability, and fecundity. The korean Journal of Pesticide Science. 11(1):1-7
  3. Costa, L. G. (2006) Current issues in organophosphate toxicology. Clin. Chim. Acta. 366: 1 -13 https://doi.org/10.1016/j.cca.2005.10.008
  4. Field, L. M., A. L. Devonshire and B. G. Forde (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251:309-312
  5. Kang, S. Y. and Y. G. Kim (1998) Esterase isozymes of beet armyworm, Spodoptera exigua (Hubner), with development and tissue. Korean J. Appl. Entomol. 37(2):179-185
  6. Jones, B. R. and H. R. Bancroft (1986) Distribution and probable physiological role of esterases in reproductive, digestive, and fat-body tissues of the adult cotton boll weevil, Anthonomus grandis Boh. Biochem. Genet. 24:499-508 https://doi.org/10.1007/BF00499102
  7. Lee, D. W., S. S. Kim, S. W. Shina, W. T. Kim and K. S. Boo (2006) Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenee). Biochimica. et Biophysica Acta. 1760(2): 125 -133 https://doi.org/10.1016/j.bbagen.2005.10.009
  8. Lee, S. Y., Yoo J. S., Moon S. J., Lee S. G., Kim C. S., Shin S. C. and G. H. Kim (2003) Fumigant and repellency effects terpene against the two-spotted spide mites, Tetranychus urticae (Acari: Tetrany chidae). Korean J. Appl. Entomol. 42(3):249-255
  9. Madley, I. C. and B. D. Hames (1981) An analysis of discoidin I binding sites in Dictyostelium discoideum (NC4). Biochem. J. 200:83-91 https://doi.org/10.1042/bj2000083
  10. Raftos, D. A. (1989) The biochemical basis of malathion resistance in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. Physiol. 26:302 -309
  11. Raymond, M., V. Beyssat-Amaouty, N. Sivasubramanian, C. Mouches, G.P. Georghiou and N. Pasteur (1989) Amplification of various esterase B's responsible for organophosphate resistance in Culex mosquitoes. Biochem. Genet. 27:417-423 https://doi.org/10.1007/BF02399670
  12. Srinivas, R., S. K. Jayalaksmi and K. Sreeramulu (2004) Hydrolysis of organophosphorus compounds by an esterase isozyme from insecticide resistant pest Helicoverpa annigera, Ind. J. Exp. Biol. 42:214-216
  13. Srinivas, R., S. K. Jayalakshmi, K. Sreeramulu, N. E. Sherman and J. Rao (2006) Purification and characterization of an esterase isozyme involved in hydrolysis of organophosphorus compounds from an insecticide resistant pest, Helicoverpa armigera (Lepidoptera: Noctuidae). Biochim. Biophys. Acta. 1760(3):310-317 https://doi.org/10.1016/j.bbagen.2005.12.009
  14. Sun, L., X. Zhou, J. Zhang and X. Gao (2006) Polymorphisms in a carboxylesterase gene between organophosphate-resistant and -susceptible Aphis gossypii (Homoptera: Aphididae). J. Econ. Entomol. 98(4): 1325 -1332 https://doi.org/10.1603/0022-0493-98.4.1325
  15. Tholl, D. (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology. 9(3):297 - 304 https://doi.org/10.1016/j.pbi.2006.03.014
  16. Zhou, X., M. E. Scharf, G. Sarath, L. J. Meinke, L. D. Chandler and B. D. Siegfried (2004) Partial purification and characterization of a methyl-parathion resistance- associated general esterase in Diabrotica virgifera (Coleoptera: Chrysomelidae). Pestic. Biochem. Physiol. 78:114-125 https://doi.org/10.1016/j.pestbp.2003.10.003
  17. Ziegler, R., S. Whyard, A. E. R. Downe, G. R. Wyatt and V.K. Walker (1987) General esterase, malathion carboxylesterase and malathion resistance in Culex tarsalis. Pestic. Biochem. Physiol. 28:279 -285 https://doi.org/10.1016/0048-3575(87)90026-5