Effect of Carbon on Electrode Characteristics of $LiCoO_2$ Resynthesis

$LiCoO_2$의 재합성시(再合成時) 전극특성(電極特性)에 미치는 탄소(炭素)의 영향(影響)

  • Lee, Churl-Kyoung (School of Material & System Engineering, Kumoh National Institute of Technology) ;
  • Park, Jeong-Kil (School of Material & System Engineering, Kumoh National Institute of Technology) ;
  • Sohn, Jeong-Soo (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources)
  • 이철경 (금오공과대학교 신소재시스템공학부) ;
  • 박정길 (금오공과대학교 신소재시스템공학부) ;
  • 손정수 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2007.12.27

Abstract

The mechanical process followed by hydrometallurgical treatment has been developed in order to recover cobalt and lithium from spent lithium ion battery. In the previous study, a citrate precursor combustion process to prepare cathodic active materials from the leaching solution was elucidated. Resynthesis of electrode materials should be more valuable in spent battery recycling. Conventional slurry mixing of $LiCoO_2$ and carbon cannot make uniform distribution, and therefore the cathode cannot reach the theoretical charge-discharge capacity and is easily degraded during the charge-discharge cycling. In this study, ultra-fine $LiCoO_2$ powders has been prepared by modification of the combustion process and fabricated the enhanced cathode by modification of mixing method of $LiCoO_2$ and carbon added.

폐리튬이온전지의 리싸이클링을 위하여 폐전지의 기계적 처리에 의한 Co의 농축과 습식처리에 의한 Co의 회수기술이 개발되었다. 전 연구에서는 폐전지 리싸이클링의 부가가치를 향상시키기 위하여 Co 농축 침출액으로부터 양극활물질을 재합성하는 공정으로 citrate precursor combustion법을 제안하고 가능성을 확인하였다. 기존의 전극제조 공정에서는 활물질인 $LiCoO_2$와 첨가제인 탄소의 비중 및 크기 차이로 균일한 혼합이 이루어지지 않으므로 충방전 용량이 이론용량에 비하여 매우 낮고 또한 싸이클이 반복될수록 용량이 크게 감소하는 경향을 보였다. 본 연구에서는 합성된 $LiCoO_2$ 전극특성을 향상시키는 일환으로 합성공정의 개선을 통하여 초미립 $LiCoO_2$을 합성하였으며, 탄소 첨가시 혼합법의 개선에 의하여 우수한 충방전 특성을 갖는 리튬전지용 양극을 개발하였다.

Keywords

References

  1. 이철경, 김태현,2000: 폐리튬이온전지로부터 분리한 양극 활물질의 침출, 자원리사이클링 학회지,9(4), pp. 37-43
  2. 이철경, 양동효, 2001: 폐리튬이온전지로부터 유가금속의 회수, 공업화학회지, 12(8), pp. 890-895
  3. 이철경, 양동효, 김낙형, 2002: Oxalic acid 용액에서 $LiCoO_2$의 선택침출, 지원리사이클링학회지, 11(3), pp. 10-16
  4. Lee, C. K. and Rhee, K.-I., 2002: Preparation of $LiCoO_2$ from spent Lithium Ion Batteries, Journal of Power Sources, 109, pp. 17-21 https://doi.org/10.1016/S0378-7753(02)00037-X
  5. Lee, C. K. and Rhee, K.-I., 2003: Reductive leaching of cathodic active materials from lithium ion battery waste, Hydrometallurgy, 68, pp. 5-10 https://doi.org/10.1016/S0304-386X(02)00167-6
  6. Reimers, J. N. and Dahn, J. R., 1992: Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in $LixCoO_2$, J. Electrochem. Soc., 139, pp. 2091-2097 https://doi.org/10.1149/1.2221184
  7. Reimers, J. N., Dahn, J. R., and von Sacken, U., 1993: Effects of Impurities on the Electrochemical Properties of $LiCoO_2$, J. Electrochem. Soc, 140, pp. 2752-2754 https://doi.org/10.1149/1.2220905
  8. Chebiam, R. V., Kannan, A. M., Prado, F., and Manthriam, A., 2001: Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries, Electrochem. Commun., 3(11), pp. 624-627 https://doi.org/10.1016/S1388-2481(01)00232-6
  9. Chebiam, R. V., Prado, R, and Manthriam, A., 2002: Comparison of the Chemical Stability of $Li_{1-x}CoO_2$ and $Li_{1-x}Ni_{0.85}Co_{0.15}O_2$ Cathodes, J. Solid State Chem., 163(1), pp. 5-9 https://doi.org/10.1006/jssc.2001.9404
  10. Amatucci, G. G, Tarascon, J. M., and Klein, L. C., 1996: Cobalt dissolution in$LiCoO_2-based$ non-aqueous rechargeable batteries, Solid State Ionics, 3(1-2), pp. 167-173 https://doi.org/10.1016/0167-2738(81)90044-8
  11. Aurbach, D., et al, 2002: On the capacity fading of $LiCoO_2$ intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives, Electrochem. Acta, 47(27), pp. 4291-4306 https://doi.org/10.1016/S0013-4686(02)00417-6
  12. Thomas, M. G. S. R., Bruce, P. G., and Goodenough, J. B., 1986: AC impedance of the $Li_{1-x}CoO_2$ electrode, Solid State Ionics, 18-19, pp. 794-798
  13. Jang, Y, 1999: $LiAl_yCo_{1-y}O_2$ Intercalation Cathode for Rechargeable Lithium Batteries, J. Electrochem. Soc, 146, pp. 862-868 https://doi.org/10.1149/1.1391693
  14. Tukamoto, H., and West, A. R., 1997: Electronic Conductivity of $LiCoO_2$ and Its Enhancement by Magnesium Doping, J. Electrochem. Soc, 144, pp. 3164-3168 https://doi.org/10.1149/1.1837976
  15. Holzapfel, M., Schreiner, R., and Ott, A., 2001: Lithium-ion conductors of the system $LiCo_{1-x}Fe_xO_2$ : a first electrochemical investigation, Electrochim. Acta, 46(7), pp. 1063-1070 https://doi.org/10.1016/S0013-4686(00)00683-6
  16. Julien, C, Nazari, A. A., and Rougier, A., 2000: Electrochemical performances of layered $LiM_{1-y}M_yO_2$ (M=Ni, Co; M'=Mg, Al, B) oxides in lithium batteries, Solid State Ionics, 135(1-4), pp. 121-130 https://doi.org/10.1016/S0167-2738(00)00290-3
  17. Chen, Z., Christensen L., and Dahn, J. R., 2003: Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers, Electrochem. Comm., 5(11), pp. 919-923 https://doi.org/10.1016/j.elecom.2003.08.017
  18. Mladenov, M., et al, 2001: Effect of Mg doping and MgO-surface modification on the cycling stability of $LiCoO_2$ electrodes, Eletrochem. Comm., 3(8), pp. 410-416 https://doi.org/10.1016/S1388-2481(01)00192-8
  19. Delmas, C. and Saadoune, I., 1992: Electrochemical and physical properties of the $LiNi_{1-y}Co_yO_2$ phases, Solid State Ionics, 53/56, pp. 370-375 https://doi.org/10.1016/0167-2738(92)90402-B
  20. Ohzuku, T. and Ueda, A., 1997: Phenomenological Expression of Solid-State Redox Potentials of $LiCoO_2$, $LiCoO_{1/2}Ni_{1/2}O_2$, and $LiNiO_2$ Insertion Electrodes, J. Electrochem. Soc., 144, pp. 2780-2785 https://doi.org/10.1149/1.1837895
  21. Rougier A., et al, 1996: Effect of cobalt substitution on cationic distribution in $LiNi_{1-y}Co_yO_2$ electrode materials, Solid State Ionics, 90(1-4), pp. 83-90 https://doi.org/10.1016/S0167-2738(96)00422-5
  22. Cho, J., et al, 1999: Effect of Preparation Methods of $LiNi_{1-x}Co_xO_2$ Cathode Materials on Their Chemical Structure and Electrode Performance, J. Electrochem. Soc., 146, pp. 3571-3576 https://doi.org/10.1149/1.1392516
  23. Delmas, C., et al., 1999: An overview of the Li(Ni, M)$O_2$ systems: syntheses, structures and properties, Electrochim. Acta, 45(1-2), pp. 243-253 https://doi.org/10.1016/S0013-4686(99)00188-7
  24. Cho, J., et al, 2000: Electrochemical Properties and Thermal Stability of $LiNi_{1-x}Co_xO_2$ Cathode Materials, J. Electrochem. Soc., 147, pp. 15-20 https://doi.org/10.1149/1.1393137
  25. Madhavi, S., et al, 2001: Effect of aluminium doping on cathodic behaviour of $LiNi_{0.7}Co_{0.3}O_2$, J. Power Sources, 93(1-2), pp. 156-162 https://doi.org/10.1016/S0378-7753(00)00504-8
  26. Kobayashi, H., et al, 2000: Electrochemical Properties of Hydrothermally Obtained $LiCo_{1-x}Fe_xO_2$ as a Positive Electrode Material for Rechargeable Lithium Batteries, J. Electrochem. Soc., 147, pp. 960-969 https://doi.org/10.1149/1.1393298
  27. Alcantara, R., et al, 1999: X-ray diffraction, $^{57}Fe$ Mossbauer and step potential electrochemical spectroscopy study of $LiFe_yCo_{1-y}O_2$ compounds, J. Power Sources, 81/82, pp. 547-553 https://doi.org/10.1016/S0378-7753(99)00213-X
  28. Madhavi, S. and Subba Rao, G. V., 2001: Synthesis and Cathodic Properties of $LiCo_{1-y}RhyO_2$ ($0\leq{y}\leq0.2$) and $LiRhO_2$, J. Electrochem. Soc., 148, pp. A1279-1286 https://doi.org/10.1149/1.1410968
  29. Yoon, W., et al, 2000: Structural and Electrochemical Properties of $LiAl_yCo_{1-y}O_2$ Cathode for Li Rechargeable Batteries, J. Electrochem. Soc., 147, pp. 2023-2028 https://doi.org/10.1149/1.1393479
  30. Imanish, N., et al, 2001: Cycling performances and interfacial properties of a $Li/PEO-Li(CF_3SO_2)_2N-$ ceramic filler/$LiNi_{0.8}Co_{0.2}O_2$ cell, J. Power Sources, 97/98, pp. 795-797 https://doi.org/10.1016/S0378-7753(01)00610-3
  31. Cho, J., Kim, Y. J., and Park, B., 2001: $LiCoO_2$ Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase, J. Electrochem. Soc, 148, pp. A1110-A1115 https://doi.org/10.1149/1.1397772
  32. Scorati, B., 1992: Lithium Rocking Chair Batteries: An Old Concept, J. Electrochem. Soc., 139, pp. 2776-2781 https://doi.org/10.1149/1.2068978
  33. Dominko, R., et al., 2003: Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries, Electrochim. Acta, 48(24), pp. 3709-3716 https://doi.org/10.1016/S0013-4686(03)00522-X
  34. Kim, J., et al, 2005: Direct carbon-black coating on $LiCoO_2$ cathode using surfactant for high-density Li-ion cell, J. Power Sources, 139, pp. 289-294 https://doi.org/10.1016/j.jpowsour.2004.07.008
  35. Hong, J. K., et al, 2002: Effect of carbon additive on electrochemical performance of $LiCoO_2$ composite cathodes, J. Power Sources, 111, pp. 90-96 https://doi.org/10.1016/S0378-7753(02)00264-1
  36. Cheon, S. E., et al, 2000: Effect of binary conductive agents in $LiCoO_2$ cathode on performances of lithium ion polymer battery, Electrochim. Acta, 46, pp. 599-605 https://doi.org/10.1016/S0013-4686(00)00626-5
  37. Swain, B., et al, 2007: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, Journal of Power Sources, 167, pp. 536-544 https://doi.org/10.1016/j.jpowsour.2007.02.046
  38. Lee, C. K., et al., 1997: Thermal Treatent of $La_{0.6}Ca_{0.4}CoO_3$ Perovskite Oxides for Bifunctional Air Electrodes Journal of Electrochem. Soc., 144(11), pp. 3801-3807 https://doi.org/10.1149/1.1838095
  39. 박정길, 2007: 리튬이온전지 양극에 탄소물질 첨가의 영향, 석사학위논문, 금오공과대학교 대학원
  40. Ohzuku, T., et al, 1993: Comparative study of $LiCoO_2$, $LiNi_{1/2}Co_{1/2}O_2$ and $LiNiO_2$ for 4 volt secondary lithium cells, Electrochim. Acta, 38(9), pp. 1159-1167 https://doi.org/10.1016/0013-4686(93)80046-3