Genotypic Variation of Early Growth Vigor and Indicator Traits for its Indirect Selection in Rice

벼 유모활력의 품종 변이와 간접 선발을 위한 초기생육 지표형질 탐색

  • Fu, Jin-Dong (Department of Plant Science, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science, Seoul National University)
  • 부금동 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이변우 (서울대학교 농업생명과학대학 식물생산과학부)
  • Published : 2007.12.31

Abstract

Early growth vigor(EGV) is one of the physiological characteristics that may contribute to the increase of genetic yield potential and radiation use efficiency by closing the canopy earlier. To estimate the genotypic variation of EGV, determine the relationships among the related traits, and identify the rapidly growing genotypes and indirect indicator for selection in breeding program, the evaluation of EGV and EGV-related traits was conducted for a total of 140 rice varieties consisting of 101 Korean, 25 Northern China and 14 IRRI-bred rice varieties in a serial sowing experiment in plastic rain shelter and plastic-covered nursery bed in 2003. EGV defined as the amount of leaf area and/or dry weight produced early in the season and the EGV-related traits such as length and breadth of the $2^{nd}\;and\;3^{rd}$ leaves showed highly significant positive correlation with the embryo and seed weight. Especially, the genotypic variation in the length of the third leaf was explained over 90% of genotypic variation in the seed weight. Owing to a large effect of seed size on EGV and its related traits, vigor measurements were adjusted based on their linear or exponential relationships with seed weight for excluding the seed weight effect. EGV and its related-traits adjusted for seed weight also showed big variation among genotypes. Increased EGV was genetically correlated with increases in breadth and length of early leaves. The broad-sense heritability for EGV was significantly high(81%), but lower than those of leaf breadth(90% for the $2^{nd}$ leaf and 93% for the $3^{rd}$ leaf) and length(87% for the $2^{nd}$ leaf and 89% for the $3^{rd}$ leaf). Significantly positive genetic correlations were found between EGV and the breadth and length of early leaves. The high heritability of early leaf breadth and length coupled with their strong genetic correlation with EGV indicated that the breadth and length of the $2^{nd}\;and\;3^{rd}$ leaf would be used as good indirect indicators for EGV selection in rice breeding program.

유묘활력(early growth vigor, EGV)은 초기 생장의 빠르고 늦음을 나타내는 특성이다. 유묘활력의 품종간 변이 및 관련형질간의 상호관계를 검토하여 유묘활력 간접선발지표를 찾고자 2003년 한국품종, 중국품종, IRRI품종 등 총 140개 품종을 대상으로 플라스틱하우스에서 시기를 달리하여 저온기와 고온기 2회, 봄철 보온절충 못자리에서 1회 등 총 3회에 걸쳐서 EGV 및 그 관련 형질 들을 조사하였다. EGV는 파종 후 일정시기가 지난 후에 측정한 생장량(건물중 또는 엽면적)으로 평가할 수 있다. 생육초기 엽폭과 엽장으로 정의되는 EGV 관련형질은 배와 종자의 무게와 고도로 유의한 정의 상관관계가 있었다. 특히 3엽장의 유전변이는 종자무게의 유전변이에 의해 90%이상 설명할 수 있었다. 이와 같이 종자무게는 초기활력이나 그 관련형질에 크게 영향하기 때문에 유묘활력에 미치는 종자 무게의 영향을 제거하고자 종자무게와 유묘활력 및 관련요소들의 직선적 또는 지수적 관계(식)로부터 종자무게의 영향을 배제한 유묘활력 및 관련 형질의 값을 계산하였다 종자 무게의 영향을 제거한 보정 유묘활력(EGVA)과 그 관련형질들도 품종간 큰 변이를 나타내었다. 생육초기 잎들의 엽폭 및 엽장은 EGVA와 높은 유전상관을 보일 뿐만 아니라 높은 광의의 유전력을 보였다. 생육초기잎들의 엽폭(2엽의 90%, 3엽의 93%)이나 엽장(2엽의 87%, 3엽의 89%)의 광의의 유전력은 EGVA의 광의의 유전력 81%보다도 높았다. 따라서 생육초기 잎인 제2엽과 3엽의 엽장 및 엽폭은 EGV를 간접적으로 선발할 수 있는 지표로 이용할 수 있을 것으로 판단되었다.

Keywords

References

  1. Asch, F., A. Sow, and M. Dingkuhn. 1999. Reserve mobilization, dry matter partitioning and specific leaf area in seedling of Africa rice cultivars differing in early vigor. Field Crops Res. 61 : 191-202
  2. Bort, J., J. L. Araus, H. Hazzam, S. Grando, and S. Ceccarelli. 1998. Relationships between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiol, and Biochem. 36 : 889-897 https://doi.org/10.1016/S0981-9428(99)80007-2
  3. Botwright, T., A. G. Condon, G. J. Rebetzke, and R. A. Richards. 2002. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Australian J. of Agric. Res. 53 : 1137-1145 https://doi.org/10.1071/AR02007
  4. Cisse, N. and G. Ejeta. 2003. Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci. 43: 824-828 https://doi.org/10.2135/cropsci2003.0824
  5. Cai, Y. H., M. Tahir, and S. K. Yau. 1993. Relationship of growth vigor, leaf color and other agronomic characters with grain yield in winter and facultative barley in a low-rainfall environment. Rachis 12: 20-23
  6. Cui, K. H., S. B. Peng, Y. Z. Xing, C. G. Xu, S. B. Yu, and Q. Zhang. 2002. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor. and Appl. Genetics 105 : 745-753 https://doi.org/10.1007/s00122-002-0908-2
  7. Dingkuhn, M., M. P. Jones, D. E. Johnson, and A. Sow. 1998. Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Res. 57 : 57-69 https://doi.org/10.1016/S0378-4290(97)00115-9
  8. Fakorede, M. A. B. and D. K. Ojo. 1981. Variability for seedling vigour in maize. Exper. Agric. 17 : 195-201 https://doi.org/10.1017/S0014479700011455
  9. Falconer, D. S. 1954. Validity of the theory of genetic correlation. J. of Heredity 45 : 42-44 https://doi.org/10.1093/oxfordjournals.jhered.a106434
  10. Khush, G. S. and S. Peng. 1996. Breaking the yield frontier of rice. Increasing yield potential in wheat: breaking the barrier, Mexico. CIMMYT
  11. Krishnasamy, V. and D. V. Seshu. 1989. Seed germination rate and associated characters in rice. Crop Sci. 29: 904-908 https://doi.org/10.2135/cropsci1989.0011183X002900040012x
  12. Lu, X. L., A. L. Niu, H. Y. Cai, Y. Zhao, J. W. Liu, Y. G. Zhu, and Z. H. Zhang. 2007. Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice. Plant Sci. 172(2) : 212-220 https://doi.org/10.1016/j.plantsci.2006.08.012
  13. Lopez-Castaneda, C, R. A. Richards, and G. D. Farquhar. 1995. Variation in early vigor between wheat and barley. Crop Sci. 35 : 472-479 https://doi.org/10.2135/cropsci1995.0011183X003500020032x
  14. Lopez-Castaneda, C, R. A. Richards, G. D. Farquhar, and R. E. Williamson. 1996. Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Sci. 36 : 1257-1266 https://doi.org/10.2135/cropsci1996.0011183X003600050031x
  15. Maiti, R. K., P. S. Raju, and F. R. Bidinger. 1981. Evaluation of visual scoring for seedling vigor in sorghum. Seed Sci. and Tech. 9 : 613-622
  16. Murata, Y. 1967. In photosynthesis and utilization of solar energy. Level I Experiments Reports 1, August 1967. JIBP/ PP-Photosynthesis Local Productivity Group, National Sectional Committee for PP/JPP
  17. Murty, P. S. S. and K. S. Murty. 1981. Effect of low light at anthesis on spikelet sterility in rice. Curr. Sci. 50 : 420-421
  18. Nyquist, W. E. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Rev. of Plant Sci. 10 : 235-322 https://doi.org/10.1080/07352689109382313
  19. Pandey, M. P., D. V. Seshu, and M. Akbar. 1994. Genetics of embryo size and its relationship with seed and seedling vigour in rice (Oryza sativa L.). Indian J. of Genetics and Plant Breeding 54 : 258-268
  20. Peng, S., R. C. Laza, R. M. Visperas, A. L. Sanico, K. G. Cassman, and G. S. Krush. 2000. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci. 40 : 307-314 https://doi.org/10.2135/cropsci2000.402307x
  21. Rebetzke, G. J., T. L. Botwright, C. S. Moore, R. A. Richards, and A. G. Condon. 2004. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res. 88 : 179-189 https://doi.org/10.1016/j.fcr.2004.01.007
  22. Rebetzke, G. J. and R. A. Richards. 1999. Genetic improvement of early vigour in wheat. Australian J. of Agric. Res. 50 : 291-301 https://doi.org/10.1071/A98125
  23. Redona, E. D. and D. J. Mackill. 1996. Mapping quantitative trait loci for seedling-vigor in rice using RFLPs. Theor. and Appl. Genetics 92 : 395-402 https://doi.org/10.1007/BF00223685
  24. Revilla, P., A. Button, R. A. Malvar, and A. Ordas. 1999. Relationships among kernel weight, early vigor, and growth in maize. Crop Sci. 39 : 654-658 https://doi.org/10.2135/cropsci1999.0011183X003900020007x
  25. Richards, R. A. and Z. Lukacs. 2002. Seedling vigour in wheat-sources of variation for genetic and agronomic improvement. Australian J. of Agric. Res. 53 : 41-50 https://doi.org/10.1071/AR00147
  26. Soltani, A. and S. Galeshi. 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Res. 77: 17-30 https://doi.org/10.1016/S0378-4290(02)00045-X
  27. Turner, N. C. and M. E. Nicolas. 1998. Early vigour: a yield-positive characteristic for wheat in drought-prone Mediterranean environments. Crop Improvement for Stress Tolerance. CCSHAU, Hisar, New Delhi, India 47-62
  28. Whan, B. R., Carlton, G. P., and W. K. Anderson. 1991. Potential for increasing early vigour and total biomass in spring wheat. I. Identification of genetic improvements. Australian J. of Agric. Res. 42 : 347-361 https://doi.org/10.1071/AR9910347
  29. Yin, J., S. Peng, Q. He, H. Yang, C. Yang, R. M. Yisperas, and K. G. Cassman. 1999. Comparison of high yield rice in tropical and subtropical environments of grain and dry matter yield. Field Crops Res. 57 : 71-84 https://doi.org/10.1016/S0378-4290(98)00077-X
  30. Zeng, L. and M. C. Shannon. 2000. Effects of salinity on grain yield and yield components of rice at different seeding densities. Agronomy J. 92 : 418-423 https://doi.org/10.2134/agronj2000.923418x
  31. Zhang, Z. H., S. B. Yu, T. Yu, Z. Huang, and Y. G. Zhu. 2005a. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res. 91 : 161-170 https://doi.org/10.1016/j.fcr.2004.06.004
  32. Zhang, Z. H., X. S. Qu, S. Wan, L. H. Chen, and Y. G. Zhu. 2005b. Comparison of QTL controlling seedling vigor under different temperature conditions using recombinant inbred lines in rice (Oryza sativa L.). Ann. of Bot. 95 : 423-429