DOI QR코드

DOI QR Code

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour

  • Truc, P.T.H. (Department of Computer Engineering, Kyung Hee University) ;
  • Kim, T.S. (Department of Biomedical Engineering, Kyung Hee University) ;
  • Kim, Y.H. (College of Advanced Technology, Kyung Hee University) ;
  • Ahn, Y.B. (Department of Electronic Engineering, Konkuk University) ;
  • Lee, Y.K. (Department of Computer Engineering, Kyung Hee University) ;
  • Lee, S.Y. (Department of Computer Engineering, Kyung Hee University)
  • 발행 : 2007.12.31

초록

In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.

키워드

참고문헌

  1. L. Wang, M. Greenspan, and R. Ellis, 'Validation of bone segmentation and improved 3-D registration using contour coherence in CT data,' IEEE Trans. Med. Imag., vol. 25, pp. 324-334, 2006 https://doi.org/10.1109/TMI.2005.863834
  2. R. Robb, D. Hanson, R. Karwoski, A. Larson, E. Workman, and M. Stacy, 'Analyze: a comprehensive, operator- interactive software package for multidimensional medical image display and analysis,' Comput. Med. Imaging Graph., vol. 13, pp. 433-454, 1989 https://doi.org/10.1016/0895-6111(89)90285-1
  3. W. Schroeder, L. Avila, and W. Hoffman, 'Visualizing with VTK: a tutorial,' IEEE Comput. Graph. Appl., vol. 20, pp. 20-27, 2000
  4. T. Yoo and M. Ackerman, 'Open source software for medical image processing and visualization,' Commun. ACM, vol. 48, pp. 55-59, 2005
  5. T. Sebastian, H. Tek, J. Crisco, and B. Kimia, 'Segmentation of carpal bones from CT images using skeletally coupled deformable models,' Medical Image Analysis, vol. 7, pp. 21-45, 2003 https://doi.org/10.1016/S1361-8415(02)00065-8
  6. M. Kass, A. Witkin, and D. Terzopoulos, 'Snakes: active contour models,' Int. J. Comput. Vis., vol. 1, no. 4, pp. 321-331, 1988 https://doi.org/10.1007/BF00133570
  7. L. Cohen and I.Cohen, 'Finite element methods for active contour models and balloons for 2D and 3D images,' IEEE Trans. Patt. Anal. Mach. Intell., vol. 15, no. 11, pp. 1131-1147, 1993 https://doi.org/10.1109/34.244675
  8. C. Xu and J. Prince, 'Snakes, shapes, and gradient vector flow,' IEEE Trans. Image Proc., vol. 7, pp. 359-369, 1998 https://doi.org/10.1109/83.661186
  9. Caselles, F. Catte, T. Coll, and F. Dibos, 'A geometric model for active contours in image processing,' Numerische Mathematik, vol. 66, pp. 1-31, 1993 https://doi.org/10.1007/BF01385685
  10. V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic active contours,' Int. J. Comp. Vis., vol. 22, pp. 61-79, 1997 https://doi.org/10.1023/A:1007979827043
  11. N. Paragios, O.M-Gottardo, and V. Ramesh, 'Gradient vector flow fast geometric active contours,' IEEE Trans. Patt. Anal. Mach. Intell., vol. 26, pp. 402-407, 2004 https://doi.org/10.1109/TPAMI.2004.1262337
  12. L. Vese and T. Chan, 'A multiphase level set framework for image segmentation using Mumford and Shah model,' Int. J. Comp. Vis., vol. 50, no. 3, pp. 271-293, 2002 https://doi.org/10.1023/A:1020874308076
  13. J. Sethian, Level Set Methods - Evolving Interface in Geometry, computer vision, New York, USA: Cambridge University Press, 1996
  14. S. Osher and J. A. Sethian, 'Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,' J. Comp. Physics, vol. 79, pp. 12-49, 1998
  15. C. S. Poon and M. Braun, 'Image segmentation by a deformable contour model incorporating region analysis,' Phys. Med. Biol., vol. 42, pp. 1833-1841, 1997 https://doi.org/10.1088/0031-9155/42/9/013
  16. X. M. Pardo, M. J. Carreira, A. Mosquera, and D. Cabello, 'A snake for CT image segmentation integrating region and edge information,' Image Vis. Comput., vol. 19, pp. 461-475, 2001 https://doi.org/10.1016/S0262-8856(00)00092-5
  17. L. Ballerini and L. Bocchi, 'Multiple genetic snakes for bone segmentation,' in Applications of Evolutionary Computing: EvoWorkshops, LNCS, vol. 2611, 2003, pp. 346-356
  18. R. Malladi, J. A. Sethian, and B. C. Vemuri, 'Shape modeling with front propagation: a level set approach,' IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, no. 2, pp. 158-175, 1995 https://doi.org/10.1109/34.368173
  19. G. Sapiro and A. Tannenbaum, 'Affine invariant scale-space,' Int. J. Comp. Vis., vol. 11, no. 1, pp. 25-44, 1993 https://doi.org/10.1007/BF01420591
  20. A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum, 'A geometric snake model for segmentation of medical imagery,' IEEE Trans. Med. Imag., vol. 16, pp. 199-209, 1997 https://doi.org/10.1109/42.563665
  21. T. Chan and L. Vese, 'Active contours without edges,' IEEE Trans. Image Proc., vol. 10, pp. 266-277, 2001 https://doi.org/10.1109/83.902291
  22. D. Mumford and J.Shah, 'Optimal approximation by piecewise smooth functions and associated variational problems,' Commun. Pure Appl. Math.,vol. 42, pp. 577-685, 1989 https://doi.org/10.1002/cpa.3160420503
  23. M. Loog and B. van Ginneken, 'Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification,' IEEE Trans. Med. Imag., vol. 25, no. 5, pp. 602-611, 2006 https://doi.org/10.1109/TMI.2006.872747