DOI QR코드

DOI QR Code

Comparison of Cell Performance with Physical Properties of Gas Diffusion Layers in PEMFCs

고분자전해질 연료전지에서 다양한 기체확산층의 물리적 특성과 연료전지 성능 비교

  • Lee, Ji-Jung (Department of Chemical Engineering, Kunsan National University) ;
  • Kim, In-Tae (Department of Chemical Engineering, Kunsan National University) ;
  • Zhang, Yan (Department of Chemical Engineering, Kunsan National University) ;
  • Lee, Hong-Ki (Department of Advanced Material Engineering, Woosuk University) ;
  • Shim, Joong-Pyo (Department of Chemical Engineering, Kunsan National University)
  • 이지정 (군산대학교 화학공학과) ;
  • 김인태 (군산대학교 화학공학과) ;
  • 장언 (군산대학교 화학공학과) ;
  • 이홍기 (우석대학교 신소재공학과) ;
  • 심중표 (군산대학교 화학공학과)
  • Published : 2007.11.28

Abstract

PEMFC electrodes with various gas diffusion layers (GDL) were characterized to find out the effect of GDL on fuel cell performance. The physical properties of GDL such as electric conductivity, porosity, air permeability, water flux, PTFE content, etc had close relationship each other and affected on the variation of the cell performance. It was observed that the micro-porous layer (MPL) on carbon paper or cloth changed the physical properties of GDL and changed the cell performance. The variation of cell performance as a function of the physical properties of GDL showed different behaviors according to the amount of current density.

다양한 종류의 기체확산층 (gas diffusion layer, GDL)을 이용하여 고분자전해질 연료전지의 성능을 시험하였으며 이를 통해 GDL의 물리적 특성과 연료전지의 성능과의 상관관계를 규명하고자 하였다. 전기전도도, 기공도, air permeability, water flux, PTFE 함량, micro-porous layer (MPL)의 유무에 따른 연료전지 성능의 변화가 고찰되었다. GDL의 물리적 특성들은 서로 밀접한 관계를 가지고 있어 연료전지의 성능변화에 영향을 주었다. Carbon paper나 carbon cloth상에 MPL의 형성이 GDL의 물리적 특성을 변화시켜 연료전지의 성능을 변화시킬 수 있음을 관찰하였다. 물리적 특성과 연료전지 성능과의 관계는 전류밀도의 크기에 따라 다른 경향을 나타내거나 혹은 무관한 경향을 보였다.

Keywords

References

  1. G. Hoogers, 'Fuel Cell Technology Handbook', CRC Press, Ch. 6 (2003)
  2. S. Litster, G. McLean, J. Power Sources, 130, 61 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.055
  3. S. Srinivasan, 'Fuel Cells; From Fundamentals to Application', Springer, p275, 2006
  4. C. Lim, C. Y. Wang, Electrochim. Acta, 49, 4149 (2004) https://doi.org/10.1016/j.electacta.2004.04.009
  5. G.-G. Park, Y.-J. Sohn, T.-H. Yang, Y.-G. Yoon, W.-Y. Lee, C.-S. Kim, J. Power Sources, 131, 182 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.037
  6. M. Prasanna, H. Y. Ha, E. A. Cho, S.-A. Hong, I.-H. Oh, J. Power Sources, 131, 147 (2004) https://doi.org/10.1016/j.jpowsour.2004.01.030
  7. L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C. Muddle, M. Forsyth, J. Power Sources, 86, 250 (2000) https://doi.org/10.1016/S0378-7753(99)00489-9
  8. E. Antolini, R. R. Passos, E. A. Ticianelli, J. Power Sources, 109, 477 (2002) https://doi.org/10.1016/S0378-7753(02)00112-X
  9. A. M. Kannan, L. Munukutla, J. Power Sources, 167, 330 (2007) https://doi.org/10.1016/j.jpowsour.2007.02.064
  10. S. Escribano, J.-F. Blachot, J. Etheve, A. Morin, R. Mosdale, J. Power Sources, 156, 8 (2006) https://doi.org/10.1016/j.jpowsour.2005.08.013
  11. J. Ge, A. Higier, H. Liu, J. Power Sources, 159, 922 (2006) https://doi.org/10.1016/j.jpowsour.2005.11.069
  12. T. Frey, M. Linardi, Electrochim. Acta, 50, 99 (2004) https://doi.org/10.1016/j.electacta.2004.07.017
  13. S. Gamburzev, A. J. Appleby, J. Power Sources, 107 (2002) 5 https://doi.org/10.1016/S0378-7753(01)00970-3
  14. G. Lin, T. V. Nguyen, J. Electrochem. Soc., 152, A1942 (2005) https://doi.org/10.1149/1.2006487
  15. S. Park, J.-W. Lee, B.N. Popov, J. Power Sources, 163, 357 (2006) https://doi.org/10.1016/j.jpowsour.2006.09.020
  16. Thermal analysis of PTFE from TA Instruments, www.tainstruments.com
  17. K. Kinoshita, 'Carbon; Electrochemical and physicochemical properties', John Wiley & Sons, p87 (1988)
  18. M. V. Williams, H. R. Kunz, J. M. Fenton, J. Electrochem. Soc., 151, A1617 (2004) https://doi.org/10.1149/1.1789791
  19. J. P. Feser, A. K. Prasad, S. G. Advani, J. Power Sources, 162, 1226 (2006) https://doi.org/10.1016/j.jpowsour.2006.07.058
  20. Z. Zhan, J. Xiao, D. Li, M. Pan, R. Yuan, J. Power Sources, 160, 1041 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.060

Cited by

  1. Characterization of Milled Carbon Fibers-filled Pitch-based Carbon Paper for Gas Diffusion Layer vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.262
  2. Preparation and Characterization for Carbon Composite Gas Diffusion Layer on Polymer Electrolyte Membrane Fuel Cells vol.23, pp.1, 2012, https://doi.org/10.7316/khnes.2012.23.1.034
  3. Fuel Cell Catalyst Optimization by Six Sigma vol.11, pp.8, 2011, https://doi.org/10.5392/JKCA.2011.11.8.468
  4. Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC vol.50, pp.1, 2012, https://doi.org/10.9713/kcer.2012.50.1.118
  5. Effect of Gas Diffusion Layer on La0.8Sr0.2CoO3Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution vol.27, pp.6, 2016, https://doi.org/10.7316/KHNES.2016.27.6.677