Impact of Fish Farming on Macrobenthic Polychaete Communities

해상 가두리 양식이 저서 다모류군집에 미치는 영향

  • Jung, Rae-Hong (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Yoon, Sang-Pil (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Kwon, Jung-No (Research Planning Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Lee, Jae-Seong (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Lee, Won-Chan (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Koo, Jun-Ho (Jeju Fisheries Research Institute) ;
  • Kim, Youn-Jung (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Oh, Hyun-Taik (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Hong, Sok-Jin (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Park, Sung-Eun (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI))
  • 정래홍 (국립수산과학원 환경연구팀) ;
  • 윤상필 (국립수산과학원 환경연구팀) ;
  • 권정노 (국립수산과학원 연구기획팀) ;
  • 이재성 (국립수산과학원 환경연구팀) ;
  • 이원찬 (국립수산과학원 환경연구팀) ;
  • 구준호 (국립수산과학원 제주수산연구소) ;
  • 김연정 (국립수산과학원 환경연구팀) ;
  • 오현택 (국립수산과학원 환경연구팀) ;
  • 홍석진 (국립수산과학원 환경연구팀) ;
  • 박성은 (국립수산과학원 환경연구팀)
  • Published : 2007.08.31

Abstract

Excessive input of organic matters from fish cage farms to the coastal waters has been considered as one of the major factors disturbing their benthic ecosystem. Sediment samples were taken from around the two fish cage zones (A and B) in Tongyeong coast in June and August 2003, to evaluate the ecological impacts of fish cage farming activity on the macrobenthic polychaete communities. Polychaete accounted for $81{\sim}87%$ of the total macrofauna individuals from each of the sampling stations. The number of species, abundance, diversity and dominant species of polychaete were rapidly changed with the distance from the fish cages. Within 10 m from the fish cages, Capitella capitata, which is a bio-indicator for the highly enriched sediments, was a dominant species and the lowest diversity was recorded. In particular, the maximum density (${\sim}18,410\;ind.m^2$) of C. capitata was found at Farm A where fish cages were more densely established within a semi-enclosed bay system. The sampling zone between 10 m and 15 m showed a rapid decrease of C. capitata with a rapid increase of the numbers of species, implying that this zone may be an ecotone point from a highly to a slightly enriched area. In the sampling zone between 15 m and 60 m, a transitional zone, which represents slightly enriched condition before normal one, was observed with additional increase and maintenance of the number of species and density of polychaete. In addition, the potential bio-indicators of organic enrichment, such as Lumbrineris longifolia and Aphelochaeta monilaris were the predominant species in the sampling zone. Multidimensional scaling (MDS) ordination plots and k-dominance curves confirmed the above results on the gradual changes in the macrobenthic polychaete communities. Our findings suggest that the magnitude of impact of fish cage farming activity on polychaete communities is probably governed by a distance from fish cage, density of fish cage and geomorphological characteristics around fish cage farm.

가두리 양식으로 인해 과잉 공급된 유기물은 연안의 저서생태계를 교란시키는 주요인의 하나로 알려져 왔다. 이 연구는 2003년 6월과 8월 가두리 밀집해역인 통영연안의 두 양식장(A, B)에서 가두리 양식으로 인한 유기물 오염이 저서동물군집, 특히 저서다모류군집에 미치는 영향 정도와 범위를 알아보기 위해 수행되었다. 다모류가 저서동물 군집의 개체수 조성에서 차지하는 비율은 각 조사선에서 $81%{\sim}87%$로 매우 높았다. 가두리로부터 거리가 증가함에 따라 다모류군집의 종 수, 밀도, 다양도 그리고 우점종의 분포 양상은 현격히 변하였다. 가두리로부터 10 m 이내에서는 유기물 오염지표종인 Capitella capitata가 우점하였으며, 종 수도 가장 낮아 군집이 유기물에 의해 심하게 교란 받고 있는 것으로 나타났다. 특히, C. capitata는 가두리 양식장의 밀집도가 상대적으로 높고 지형학적으로 보다 은폐된 양식장 A에서 최대 $18,410\;ind.m^{-2}$의 고밀도 출현 양상을 보였으며, 두 양식장의 거리에 따른 개체밀도와 다양도 패턴의 전체적인 차이를 좌우하였다. C. capitata의 개체수가 급감한 10 m 지점 이후 15 m까지 구간에서는 종 수가 급격히 증가하였다. 이런 종 수 및 밀도의 급격한 변화는 이 구간이 심한 유기물 오염 상태(highly polluted)에서 약한 유기물 오염 상태(slightly polluted)로 전환되는 추이점(ecotone point)임을 말해준다. $15{\sim}60m$ 구간에서는 종 수와 밀도의 추가적인 증가와 유지가 관찰되는 약한 유기물 오염 상태의 점이역(transitional zone)이 형성되었으며 군집의 주 구성원은 Lumbrineris longifolia, Aphelochaeta monilaris 등과 같은 잠재적 유기물 오염지시종들 이었다. K-우점도 곡선과 다차원 척도법의 결과도 앞의 군집변화와 일치하였다. 이 연구에서 저서다모류군집에 대한 유기물 오염의 영향은 가두리로부터 떨어진 거리, 가두리가 위치한 해역의 지형학적 특성 및 가두리 양식장의 밀집도에 의해 좌우되었다.

Keywords

References

  1. 강창근, 백명선, 김정배, 이필용, 2002. 진주만에서 저서다모류의 시.공간 분포. 한국수산학회지, 35(1): 35-45
  2. 권정노, 2004. 해상 어류 가두리양식장의 환경관리 모델링. 부경대학교, 박사학위 청구논문, 130pp
  3. 류종성, 최진우, 강성길, 고철환, 허성회, 1997. 시화 방조제 건설이후 시화호 다모류의 종조성 및 서식밀도 변화. 한국해양학회지-바다, 2(2): 101-109
  4. 마채우, 홍성윤, 임현식, 1995. 득량만의 저서동물 분포. 한국수산학회지, 28(5): 503-516
  5. 박흥식, 최진우, 이형곤, 2000. 통영 인근 가두리 양식장 지역의 저서동물군집 구조. 한국수산학회지, 33(1): 1-8
  6. 신현출, 윤성명, 고철환, 2001. 울산만과 온산만 저서동물군집의 공간분포. 한국해양학회지-바다, 6(3): 180-189
  7. 심정희, 강영철, 최진우, 1997. 남해안 통영지역 가두리 양식장 해수 퇴적물 경계면에서의 chemical fluxes. 한국해양학회지-바다, 2(2): 151-159
  8. 이재성, 김기현, 유준, 정래홍, 고태승, 2003. 산소미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정. 바다, 8(4): 392-400
  9. 이재성, 정래홍, 김기현, 권정노, 이원찬, 이필용, 구준호, 최우정, 2004a. 해상 어류가두리양식장의 환경영향 평가: I. 퇴적물 산소소모율 및 저서동물을 이용한 유기물 오염영향권 추정 및 유기탄소 순환. 한국해양학회지-바다, 9(1): 30-39
  10. 이재성, 김기현, 유준, 이필용, 정래홍, 이원찬, 한정희, 이용화, 2004b. 해상 어류가두리양식장의 환경영향 평가: II. 가두리양식장 퇴적물의 산소-황화수소 경계면에서 황화수소의 산화율 및 무산소 퇴적층에서 황산염 환원율 추정. 한국해양학회지-바다, 9(2): 64-72
  11. 임현식, 1993. 진해만의 저서동물에 관한 생태학적 연구. 부산수산대학교 박사학위청구논문, 311 pp
  12. 임현식, 제종길, 최진우, 이재학, 1991. 여자만에서의 여름철 저서 동물의 분포. 해양연구, 13(2): 31-46
  13. 임현식, 최진우, 제종길, 이재학, 1992. 진해만 양식장 밀집해역의 저서동물 분포. 한국수산학회지, 25(2): 115-132
  14. 임현식, 박흥식, 최진우, 제종길, 1999. 남해 앵강만 조하대 연성 저질 저서동물 군집. 한국해양학회지-바다, 4(1): 80-92
  15. 정래홍, 임현식, 김성수, 박종수, 전경암, 이영식, 이재성, 김귀영, 고우진, 2002. 남해안 가두리 양식장 밀집해역의 대형저서동물 군집에 대한 연구. 한국해양학회지-바다, 7(4): 235-246
  16. 조창환, 김용술, 1978. 굴 양식장의 환경에 관한 연구-충무부근 양식장의 저질에 관하여. 한국수산학회지, 11(4): 243-247
  17. 조창환, 박경양, 1983. 고성.자란만 패류양식장 저니의 부영양화. 한국수산학회지, 16(3): 260-264
  18. 최진우, 유옥환, 이우진, 2003. 광양만에 서식하는 대형저서동물의 하계 공간분포양상. 한국해양학회지-바다, 8(1): 14-28
  19. 최진우, 서진영, 이창훈, 류태권, 성찬경, 한기명, 현상민, 2005. 남해특별관리해역인 마산만에서 동계 및 하계에 출현하는 대형 저서동물군집의 공간분포 양상. Ocean and Polar Res., 27(4): 381-395 https://doi.org/10.4217/OPR.2005.27.4.381
  20. 해양수산부, 2004. 2003년도 해양수산주요 통계
  21. 홍재상, 정래홍, 서인수, 윤건탁, 최병미, 유재원, 1997. 시화방조제의 건설은 저서동물군집의 시공간 분포에 어떠한 영향을 미쳤는가? 한국수산학회지, 30(3): 882-895
  22. Bilyard, G.R., 1987. The value of benthic infauna in marine pollution monitoring studies. Mar. Pollut. Bull., 18: 581-585 https://doi.org/10.1016/0025-326X(87)90277-3
  23. Braaten, B., J. Aure, A. Ervik and E. Boge, 1983. Pollution problems in Norwegian fish farming. ICES C.M., 1983/F: 26: 1-11
  24. Bridges, T.S., 1992. Effects of development mode, contaminated sediments, and maternal characteristics on growth and reproduction in the polychaetes Streblospio benedicti (Spionidae) and Capitella sp. I (Capitellidae). Ph.D. thesis, North Carolina State University
  25. Brook, K.M., C. Mahnken and C. Nash, 2002. Environmental effects associated with marine netpen waste with emphasis on salmon farming in pacific northwest. In: Responsible marine aquaculture, edited by Skickney, R.R and J.P. MacVey, CABI Publishing, Oxon, pp. 159-203
  26. Brooks, K.M. and C.V.W. Mahnken, 2003. Interactions of Atlantic salmon in the Pacific northwest environment: II. Organic wastes. Fish. Res. 62: 255-293 https://doi.org/10.1016/S0165-7836(03)00064-X
  27. Brown, J.R., R.J. Gowen and D.S. McLusky, 1987. The effect of salmon farming on the benthos of a Scottish sea loch. J. Mar. Biol. Ecol., 109: 39-51 https://doi.org/10.1016/0022-0981(87)90184-5
  28. Camargo, J.A., 1994. The importance of biological monitoring for the ecological risk assessment of freshwater pollution: A case study. Environ. Int., 20: 229-238 https://doi.org/10.1016/0160-4120(94)90140-6
  29. Cardoso, P.G., M.A. Pardal, A.I. Lillebo, S.M. Ferreira, J.C. Marques and D. Raffaelli, 2004. Dynamic changes of seagrass assemblages under eutrophication and implications for recovery. J. Exp. Mar. Biol. Ecol., 302: 233-248 https://doi.org/10.1016/j.jembe.2003.10.014
  30. Cardoso P.G., M. Bankovic, D. Raffaelli and M.A. Pardal, 2007. Polychaete assemblages as indicators of habitat recovery in a temperate estuary under eutrophication. Est. Coast. Shelf. Sci., 71: 301-308 https://doi.org/10.1016/j.ecss.2006.08.002
  31. Carroll, M.L., S. Cochrane, R. Fieler, R. Velvin and P. White, 2003. Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture, 226: 165-180 https://doi.org/10.1016/S0044-8486(03)00475-7
  32. Chareonpaich, C., H. Tsutsumi and S. Montani, 1994. Efficiency of the decomposition of organic matter, loaded on the sediment, as a result of the biological activity of Capitella sp.1. Mar. Bull., 28(5): 314-318 https://doi.org/10.1016/0025-326X(94)90157-0
  33. Cho, C.H., 1991. Mariculture and eutrophication in Jinhae Bay, Korea. Mar. Pollut. Bull., 23: 275-279 https://doi.org/10.1016/0025-326X(91)90687-N
  34. Cho, H.C., K.Y. Park, H.S. Yang and J.S. Hong, 1982. Eutrophication of shellfish farms in Deukryang and Gamagyang Bays. Bull. Korean Fish. Soc., 15(3): 233-240
  35. Christensen, P.B., A. Vedel and E. Kristensen, 2000a. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes. Mar. Ecol. Prog. Ser., 192: 203-217 https://doi.org/10.3354/meps192203
  36. Christensen, P.B., S. Rysgaard, N.P. Sloth, T. Dalsgaard and S. Schwærter, 2000b. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat. Microb. Ecol., 21: 73-84 https://doi.org/10.3354/ame021073
  37. Clarke, K.R. and R.H. Green, 1988. Statistical design and analysis for a biological effects study. Mar. Ecol. Prog. Ser., 46: 213-226 https://doi.org/10.3354/meps046213
  38. Crawford, C., 2003. Environmental management of marine aquaculture in Tasmania, Australia. Aquaculture, 226: 129-138 https://doi.org/10.1016/S0044-8486(03)00473-3
  39. Dauer D.M. and W.G. Conner, 1980. Effects of moderate sewage input on benthic polychaete populations. Estuar. Mar. Sci., 10: 335-346 https://doi.org/10.1016/S0302-3524(80)80106-X
  40. FAO, 2002. The state of world aquacultures 2002. ISBN 92-5-104842-8
  41. Frid, C.L.J. and T.S. Mercer, 1989. Environmental monitoring of caged fish farming in macrotidal environments. Mar. Pollut. Bull., 20(8): 379-383 https://doi.org/10.1016/0025-326X(89)90315-9
  42. Glud, R.N., J.K. Gundersen, H. Roy and B.B. Jorgensen, 2003. Seasonal dynamics of benthic O2 uptake in a semienclosed bay: Importance of diffusion and faunal activity. Limnol. Oceanogr., 48(3): 1265-1276 https://doi.org/10.4319/lo.2003.48.3.1265
  43. Gowen, R.J. and N.B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogra. Mar. Biol. Annu. Rev., 25: 563-533
  44. Gowen, R.J., H. Rosenthal, T. Makinen and I. Ezzi, 1990. Environmental impact of aquaculture. In: Aquaculture Europe 89: Business joins Sciences, edited by de Pauw N. and R. Billard, European Aquaculture Society, Special Publication No. 12, Bredene, Belgium
  45. Gray, J.S., 1979. Pollution-induced changes in populations. Phil. Trans. R. Soc. (Ser. B), 286: 545-561 https://doi.org/10.1098/rstb.1979.0045
  46. Gray, J.S., R.S. Wu and Y.Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser., 238: 249-279 https://doi.org/10.3354/meps238249
  47. Guerra-Garcia, J.M. and J.C. Garcia-Gomez, 2004. Polychaete assemblages and sediment pollution in a harbour with two opposing entrances. Helgol. Mar. Res., 58: 183-191 https://doi.org/10.1007/s10152-004-0184-4
  48. Hall, P.O.J., L.G. Anderson, O. Holby, S. Kollberg and M.O. Samuelson, 1990. Chemical fluxes and mass balances in a marine fish cage farm. I. Carbon. Mar. Ecol. Prog. Ser., 61: 61-73 https://doi.org/10.3354/meps061061
  49. Hall, P.O.J., O. Holby, S. Kollberg and M.O. Samuelson, 1992. Chemical fluxes and mass balances in a marine fish cage farm. IV. Nitrogen. Mar. Ecol. Prog. Ser., 89: 81-91 https://doi.org/10.3354/meps089081
  50. Hevia, M., H. Rosenthal and R.J. Gowen, 1996. Modelling benthic deposition under fish cages. J. Appl. Ichthyol., 12: 71-74 https://doi.org/10.1111/j.1439-0426.1996.tb00065.x
  51. Holby, O. and P.O.J. Hall, 1991. Chemical fluxes and mass balances in a marine fish cage farm. II. Phosphorus. Mar. Ecol. Prog. Ser., 70: 263-272 https://doi.org/10.3354/meps070263
  52. Holby, O. and P.O.J. Hall, 1994. Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon. Aquaculture, 120: 305-318
  53. Holmer, M. 1991. Impacts of aquaculture on surrounding sediments: generation of organic-rich sediments. In: Aquaculture and the environment, edited by De Pauw N. and J. Joyce, European Aquaculture Society Special No. 16, Gent, Belgium, pp. 155-175
  54. Holmer, M. and E. Kristensen, 1992. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser., 80: 191-201 https://doi.org/10.3354/meps080191
  55. Hong, J.S. and J.H. Lee, 1983. Effects of the pollution on the benthic macrofauna in Masan Bay, Korea. J. Oceanol. Soc. Korea, 18(2): 169-179
  56. Kang, C.K., P.Y. Lee, J.S. Park and P.J. Kim, 1993. On the distribution of organic matter in the nearshore surface sediment of Korea. Bull. Korean Fish. Soc., 26(6): 557-566
  57. Karakassis, I., M. Tsapakis, E. Hatziyanni, K.N. Papadopoulou and W. Plaiti, 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J. Mar. Sci., 57: 1462-1471 https://doi.org/10.1006/jmsc.2000.0925
  58. Lambshead, P.J.D., H.M. Platt and K.M. Shaw, 1983. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist., 17: 859-874 https://doi.org/10.1080/00222938300770671
  59. Lee, J.H.W., R.S.S. Wu and Y.K. Cheung, 1991. Forecasting of dissolved oxygen in marine fish culture zone. J. Environ. Eng. ASCE, 117(12): 816-833 https://doi.org/10.1061/(ASCE)0733-9372(1991)117:6(816)
  60. Nilsson H.C. and R. Rosenberg, 1994. Hypoxic response of two marine benthic communities. Mar. Ecol. Prog. Ser., 115: 209-217 https://doi.org/10.3354/meps115209
  61. Pearson, T.H. and K.D. Black, 2001. The environmental impacts of marine fish cage culture. In: Environmental Impacts of Aquaculture, edited by Black, K.D., Sheffield Academic Press, Sheffield, pp. 1-31
  62. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev., 16: 229-311
  63. Ranan, A.V. and P.N. Ganapati, 1983. Pollution effects on ecology of benthic polychaetes in Visakhapatham Harbour (Bay of Bengale). Mar. Pollut. Bull., 14: 46-52 https://doi.org/10.1016/0025-326X(83)90190-X
  64. Reynolds, F.A. and T.A. Haines, 1980. Effects of chronic exposure to hydrogen sulphide on newly hatched brown trout Salmo trutta L.. Environ. Pollut., 22: 11-17 https://doi.org/10.1016/0143-1471(80)90077-X
  65. Ritz, D.A., M.E. Lewis and M. Shen, 1989. Response to organic enrichment of infaunal macrobenthic communities under salmonid seacages. Mar. Biol., 103: 211-214 https://doi.org/10.1007/BF00543349
  66. Rosenberg, R., B. Hellman and B. Johansson, 1991. Hypoxic tolerance of marine benthic fauna. Mar. Ecol. Prog. Ser., 79: 127-131 https://doi.org/10.3354/meps079127
  67. Ross, A., 1989. Marine fish farming - Scotland's pride or problem? Ecos, 10(3): 8-12
  68. Samuelson, G.M., 2001. Polychaetes as indicators of environmental disturbance subarctic tidla flat, Iqaluit, Baffin Island, Nunavut Territory. Mar. Pollut. Bull., 42: 733-741 https://doi.org/10.1016/S0025-326X(00)00208-3
  69. Shannon C.E. and W. Weaver, 1963. The mathematical theory of communications. University of Illinois Press, Urbana, 125pp
  70. Song, X., L. Huang, J. Zhang, X. Huang, J. Zhang, J. Yin, Y. Tan and S. Liu, 2004. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Mar. Pollut. Bull., 49: 1036-1044 https://doi.org/10.1016/j.marpolbul.2004.07.008
  71. Tanaka, Y., 1977. Deposition process of pollutants. In: Coastal fish farms and shelf pollution, edited by Gakkai, N.S., Kouseisha Kouseikaku, Tokyo, pp. 9-18
  72. Tsutsumi, H., 1987. Population dynamics of Capitella capitata (Polychaeta: Capitellidae) in an organically polluted cove. Mar. Ecol. Prog. Ser., 36: 139-149 https://doi.org/10.3354/meps036139
  73. Tsutsumi, H., T. Kikuchi, M. Tanaka, T. Higashi, K. Imasaka and M. Miyazaki, 1991. Benthic faunal succession in a cove organically polluted by fish farming. Mar. Pollut. Bull., 23: 233-238 https://doi.org/10.1016/0025-326X(91)90680-Q
  74. Verdelhos, T., J.M. Neto, J.C. Marques and M.A. Pardal, 2005. The effect of eutrophication abatement on the bivalve Scrobicularia plana. Est. Coast. Shelf. Sci., 63: 261-268 https://doi.org/10.1016/j.ecss.2004.11.019
  75. Warren, T.M., 1977. The ecology of Capitella capitata in British waters. J. Mar. Biol. Assoc. U.K., 57: 151-159 https://doi.org/10.1017/S0025315400021305
  76. Weston, D.P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichments gradient. Mar. Ecol. Prog. Ser., 61: 233-244 https://doi.org/10.3354/meps061233
  77. Wildish, D.J., B.T. Hargrave and G. Pohle, 2001. Cost-effective monitoring of organic enrichment resulting from salmon mariculture. ICES J. Mar. Sci., 58: 469-476 https://doi.org/10.1006/jmsc.2000.1030
  78. Wu, R.S.S., K.S. Lam, D.W. MacKay, T.C. Lau and V. Yam, 1994. Impact of marine fish farming on water quality and bottom sediment: A case study in the sub-tropical environment. Mar. Environ. Res., 38: 115-145 https://doi.org/10.1016/0141-1136(94)90004-3
  79. Ye, L.X., D.A. ritz, G.E. Fenton and M.E. Lewis, 1991. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. J. Exp. Mar. Biol. Ecol., 145: 161-174
  80. Yokoyama, H., 2002. Impact of fish and pear farming on the benthic environments in Gokasho Bay: Evaluation from seasonal fluctuations of the macrobenthos. Fish. Sci., 68: 258-268 https://doi.org/10.1046/j.1444-2906.2002.00420.x
  81. Yokoyama, H. 2003. Environmental quality criteria for fish farms in Japan. Aquaculture, 226: 45-56 https://doi.org/10.1016/S0044-8486(03)00466-6