Journal of Intelligence and Information Systems (지능정보연구)
- Volume 13 Issue 3
- /
- Pages.119-140
- /
- 2007
- /
- 2288-4866(pISSN)
- /
- 2288-4882(eISSN)
A Multi-Agent framework for Distributed Collaborative Filtering
분산 환경에서의 협력적 여과를 위한 멀티 에이전트 프레임워크
- Ji, Ae-Ttie (Department of Computer & Information Engineering, Inha University) ;
- Yeon, Cheol (Department of Computer & Information Engineering, Inha University) ;
- Lee, Seung-Hun (Department of Computer & Information Engineering, Inha University) ;
- Jo, Geun-Sik (Department of Computer & Information Engineering, Inha University) ;
- Kim, Heung-Nam (Department of Computer & Information Engineering, Inha University)
- 지애띠 (인하대학교 컴퓨터.정보공학과) ;
- 연철 (인하대학교 컴퓨터.정보공학과) ;
- 이승훈 (인하대학교 컴퓨터.정보공학과) ;
- 조근식 (인하대학교 컴퓨터.정보공학과) ;
- 김흥남 (인하대학교 컴퓨터.정보공학과)
- Published : 2007.09.30
Abstract
Recommender systems enable a user to decide which information is interesting and valuable in our world of information overload. As the recent studies of distributed computing environment have been progressing actively, recommender systems, most of which were centralized, have changed toward a peer-to-peer approach. Collaborative Filtering (CF), one of the most successful technologies in recommender systems, presents several limitations, namely sparsity, scalability, cold start, and the shilling problem, in spite of its popularity. The move from centralized systems to distributed approaches can partially improve the issues; distrust of recommendation and abuses of personal information. However, distributed systems can be vulnerable to attackers, who may inject biased profiles to force systems to adapt their objectives. In this paper, we consider both effective CF in P2P environment in order to improve overall performance of system and efficient solution of the problems related to abuses of personal data and attacks of malicious users. To deal with these issues, we propose a multi-agent framework for a distributed CF focusing on the trust relationships between individuals, i.e. web of trust. We employ an agent-based approach to improve the efficiency of distributed computing and propagate trust information among users with effect. The experimental evaluation shows that the proposed method brings significant improvement in terms of the distributed computing of similarity model building and the robustness of system against malicious attacks. Finally, we are planning to study trust propagation mechanisms by taking trust decay problem into consideration.
추천 시스템은 정보의 홍수 속에서 사용자로 하여금 자신에게 더욱 가치 있고 흥미로운 정보를 선별할 수 있도록 돕는 자동화된 정보 여과 시스템이다. 최근 분산 컴퓨팅 환경에 대한 연구가 활발히 진행되면서, 지금까지의 중앙 서버에서 모든 정보를 관리하는 중앙 집중 방식의 추천 시스템에서 P2P 환경의 접근 방식으로 선회하고 있다. 협력적 여과는 상업적인 추천 시스템에서 가장 많이 사용하는 정보 여과 기법이지만, 그 성공에도 불구하고 확장성(scalability)과 데이터의 희박성(sparsity), 악의적인 사용자의 공격(shilling attack)에 대한 방어 등에 관련된 여러 제약을 갖는다. 중앙 집중 방식에서 분산된 방식으로의 변화는 추천의 신뢰성과 개인 정보의 남용 가능성에 관련한 문제점을 일부 해결할 수 있으나, 조작된 사용자 프로파일을 사용하여 추천을 조작하려는 의도를 갖는 악의적인 사용자의 공격에는 중앙 집중 방식과 마찬가지로 취약할 수 있다. 본 논문에서는 개인 정보의 오남용과 악의적인 사용자의 공격에 관련된 문제점을 해결하고, 분산된 환경에서 효과적인 협력적 여과를 수행하여 추천의 성능과 정확성을 높이기 위한 멀티 에이전트 기반의 추천 프레임워크를 제안한다. 추천의 신뢰성을 높이기 위해 사용자간의 신뢰 정보를 사용하며, 각 사용자의 개인 에이전트와 이동 에이전트간의 정보교환을 통해 효과적으로 신뢰 정보를 전파하고 분산된 유사도 계산의 효율성을 높였다.
Keywords
- Multi-Agent System;
- Distributed Recommender System;
- Collaborative Filtering;
- Shilling Attack;
- Web of Trust;
- Social Network