참고문헌
-
T. Abualrub and R. Oehmke, On the generators of
$Z_4$ cyclic codes of length$2^e$ , IEEE Trans. Inform. Theory 49 (2003), no. 9, 2126-2133 https://doi.org/10.1109/TIT.2003.815763 -
J. M. P. Balmaceda, A. L. Rowena, and F. R. Nemenzo, Mass formula for self-dual codes over
$Z_{p2}$ , Discrete Math. (to appear) -
T. Blackford, Cyclic codes over
$Z_4$ of oddly even length, Discrete Appl. Math. 128 (2003), no. 1, 27-46 https://doi.org/10.1016/S0166-218X(02)00434-1 - A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr. 6 (1995), no. 1, 21-35 https://doi.org/10.1007/BF01390768
- J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Combin, Theory Ser. A 62 (1993), no. 1, 30-45 https://doi.org/10.1016/0097-3165(93)90070-O
-
S. T. Dougherty, T. A. Gulliver, and J. N. C. Wong, Self-dual codes over
$Z_8\;and\;Z_9$ , Des. Codes Cryptogr. 41 (2006), no. 3, 235-249 https://doi.org/10.1007/s10623-006-9000-2 - S. T. Dougherty, M. Harada, and P. Sole, Self-dual codes over rings and the Chinese remainder theorem, Hokkaido Math. J. 28 (1999), no. 2, 253-283 https://doi.org/10.14492/hokmj/1351001213
-
S. T. Dougherty and S. Ling, Cyclic codes over
$Z_4$ of even length, Des. Codes Cryptogr. 39 (2006), no. 2, 127-153 https://doi.org/10.1007/s10623-005-2773-x - S. T. Dougherty, S. Y. Kim, and Y. H. Park, Lifted codes and their weight enumerators, Discrete Math. 305 (2005), no. 1-3, 123-135 https://doi.org/10.1016/j.disc.2005.08.004
- S. T. Dougherty and Y. H. Park, Codes over the p-adic integers, Des. Codes Cryptogr. 39 (2006), no. 1, 65-80 https://doi.org/10.1007/s10623-005-2542-x
- S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl. 13 (2007), no. 1, 31-57 https://doi.org/10.1016/j.ffa.2005.06.004
-
S. T. Dougherty and K. Shiromoto, MDR codes over
$Z_k$ , IEEE Trans. Inform. Theory 46 (2000), no. 1, 265-269 https://doi.org/10.1109/18.817524 - S. T. Dougherty and K. Shiromoto, Maximum distance codes over rings of order 4, IEEE Trans. Inform. Theory 47 (2001), no. 1, 400-404 https://doi.org/10.1109/18.904544
- S. T. Dougherty and T. A. Szczepanski, Latin k-hypercubes, submitted
-
J. Fields, P. Gaborit, J. S. Leon, and V. Pless, All self-dual
$Z_4$ codes of length 15 or less are known, IEEE Trans. Inform. Theory 44 (1998), no. 1, 311-322 https://doi.org/10.1109/18.651058 - M. Greferath, G. McGuire, and M. O'Sullivan, On Plotkin-optimal codes over finite F'robenius rings, J. Algebra Appl. 5 (2006), no. 6, 799-815 https://doi.org/10.1142/S0219498806002022
-
T. A. Gulliver and J. N. C. Wong, Classification of Optimal Linear
$Z_4$ Rate 1/2 Codes of Length$\leq$ 8, submitted - R. Hill, A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series. The Clarendon Press, Oxford University Press, New York, 1986
-
Y. H. Park, Modular Independence and Generator Matrices for Codes over
$Z_m$ , submitted https://doi.org/10.1007/s10623-008-9220-8 - W. C. Huffman and V. S. Pless, Fundamentals of Error-correcting Codes, Fundamentals of error-correcting codes. Cambridge University Press, Cambridge, 2003
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, NorthHolland, Amsterdam, 1977
- G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory 46 (2000), no. 3, 1060-1067 https://doi.org/10.1109/18.841186
-
V. Pless, J. S. Leon, and J. Fields, All
$Z_4$ codes of type II and length 16 are known, J. Combin. Theory Ser. A 78 (1997), no. 1,32-50 https://doi.org/10.1006/jcta.1996.2750 - K. Shiromoto and L. Storrne, A Griesmer Bound for Linear Codes over Finite QuasiFrobenius Rings, Discrete Appl, Math. 128 (2003), no. 1,263-274 https://doi.org/10.1016/S0166-218X(02)00450-X
- J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555-575 https://doi.org/10.1353/ajm.1999.0024
피인용 문헌
- MDS and self-dual codes over rings vol.18, pp.6, 2012, https://doi.org/10.1016/j.ffa.2012.09.003
- The number of self-dual codes over $${Z_{p^3}}$$ vol.50, pp.3, 2009, https://doi.org/10.1007/s10623-008-9232-4
- MDS codes over finite principal ideal rings vol.50, pp.1, 2009, https://doi.org/10.1007/s10623-008-9215-5
- The classification of self-dual modular codes vol.17, pp.5, 2011, https://doi.org/10.1016/j.ffa.2011.02.010