DOI QR코드

DOI QR Code

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang (Department of Chemistry and Research Institute of Physics and Chemistry (RINPAC), Chonbuk National University) ;
  • Lee, Hee-Gu (Cellomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung, Hyung-Il (Department of Biotechnology, Yonsei University) ;
  • Kang, Seong-Ho (Department of Chemistry and Research Institute of Physics and Chemistry (RINPAC), Chonbuk National University)
  • Published : 2007.05.20

Abstract

The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Keywords

References

  1. Mosher, C.; Lynch, M.; Nettikadan, S.; Henderson, W.; Kristmundsdottir, A.; Clark, M. W.; Henderson, E. Journal of the Association for Laboratory Automation 2000, 5, 75
  2. Liu, Y.; Ke, Y.; Yan, H. J. Am. Chem. Soc. 2005, 127, 17140 https://doi.org/10.1021/ja055614o
  3. So, H. M.; Won, K.; Kim, Y. H.; Kim, B. K.; Ryu, B. H.; Na, P. S.; Kim, H.; Lee, J. O. J. Am. Chem. Soc. 2005, 127, 11906 https://doi.org/10.1021/ja053094r
  4. Yu, A. A.; Savas, T.; Cabrini, S.; Difabrizio, E.; Smith, H. I.; Stellacci, F. J. Am. Chem. Soc. 2005, 127, 16774 https://doi.org/10.1021/ja055762e
  5. Tian, F.; Hansen, K. M.; Ferrell, T. L.; Thundat, T.; Hansen, D. C. Anal. Chem. 2005, 77, 1601 https://doi.org/10.1021/ac048602e
  6. Niemz, A. B.; Shenda, M. Materials Research Society Symposium Proceedings 2004, 818, 229
  7. Sarveswaran, K.; Russo, C.; Robinson, A.; Huber, P.; Lent, C.; Lieberman, M. 224th ACS National Meeting, Boston, MA, United States, August 2002; pp 18-22
  8. Piehler, J. Curr. Opin. Struct. Biol. 2005, 15, 4 https://doi.org/10.1016/j.sbi.2005.01.008
  9. Jeong, S. J.; Park, S.-K.; Chang, J. K.; Kang, S. H. Bull. Korean Chem. Soc. 2005, 26, 979 https://doi.org/10.5012/bkcs.2005.26.6.979
  10. Kang, S. H.; Yeung, E. S. Anal. Chem. 2002, 74, 6334 https://doi.org/10.1021/ac0261202
  11. Koyama-Honda, I.; Ritchie, K.; Fujiwara, T.; Iino, R.; Murakoshi, H.; Kasai, R. S.; Kusumi, A. Biophys. J. 2005, 88, 2126 https://doi.org/10.1529/biophysj.104.048967
  12. Ward, E. S.; Martinez, C.; Vaccaro, C.; Zhou, J.; Tang, Q.; Ober, R. J. Mol. Biol. Cell 2005, 16, 2028 https://doi.org/10.1091/mbc.E04-08-0735
  13. Rappoport, J. Z.; Simon, S. M. J. Cell Sci. 2003, 116, 847 https://doi.org/10.1242/jcs.00289
  14. Schmoranzer, J.; Simon, S. M. Mol. Biol. Cell 2003, 14, 1558 https://doi.org/10.1091/mbc.E02-08-0500
  15. Tsuboi, T.; McMahon, H. T.; Rutter, G. A. J. Biol. Chem. 2004, 279, 47115 https://doi.org/10.1074/jbc.M408179200
  16. Quantum Dot Inc. p. Technical Note
  17. Kusnezow, W.; Jacob, A.; Walijew, A.; Diehl, F.; Hoheisel, J. D. Proteomics 2003, 3, 254 https://doi.org/10.1002/pmic.200390038
  18. Haab, B. B.; Dunham, M. J.; Brown, P. O. Genome Biol. 2001, 2, RESEARCH0004
  19. Kim, J.-K.; Shin, D.-S.; Chung, W.-J.; Jang, K.-H.; Lee, K.-N.; Kim, Y.-K.; Lee, Y.-S. Colloids and Surfaces B: Biointerfaces 2004, 33, 67 https://doi.org/10.1016/j.colsurfb.2003.08.015
  20. Zhan, W.; Seong, G. H.; Crooks, R. M. Anal. Chem. 2002, 74, 4647 https://doi.org/10.1021/ac020340y
  21. Jung, H.; Kulkarni, R.; Collier, C. P. J. Am. Chem. Soc. 2003, 125, 12096 https://doi.org/10.1021/ja0363720
  22. Laurell, T.; Wallman, L.; Nilsson, J. J. Micromechanics and Microengineering 1999, 9, 369 https://doi.org/10.1088/0960-1317/9/4/314
  23. Kang, S. H.; Jeong, S.; Kim, D. K.; He, Y.; Yeung, E. S. Bull. Korean Chem. Soc. 2005, 26, 315 https://doi.org/10.5012/bkcs.2005.26.2.315
  24. Kang, S. H.; Shortreed, M. R.; Yeung, E. S. Anal. Chem. 2001, 73, 1091 https://doi.org/10.1021/ac0013599
  25. www.optical-insights.com
  26. Murakoshi, H.; Iino, R.; Kobayashi, T.; Fujiwara, T.; Ohshima, C.; Yoshimura, A.; Kusumi, A. PNAS (USA) 2004, 101, 7317 https://doi.org/10.1073/pnas.0401354101
  27. Kusnezow, W.; Hoheisel, J. D. J. Mol. Recognit. 2003, 16, 165 https://doi.org/10.1002/jmr.625
  28. Robinson, W. H.; DiGennaro, C.; Hueber, W.; Haab, B. B.; Kamachi, M.; Dean, E. J.; Fournel, S.; Fong, D.; Genovese, M. C.; de Vegvar, H. E.; Skriner, K.; Hirschberg, D. L.; Morris, R. I.; Muller, S.; Pruijn, G. J.; van Venrooij, W. J.; Smolen, J. S.; Brown, P. O.; Steinman, L.; Utz, P. J. Nat. Med. 2002, 8, 295 https://doi.org/10.1038/nm0302-295
  29. Sreekumar, A.; Nyati, M. K.; Varambally, S.; Barrette, T. R.; Ghosh, D.; Lawrence, T. S.; Chinnaiyan, A. M. Cancer Res. 2001, 61, 7585
  30. Zhu, H.; Snyder, M. Curr. Opin. Chem. Biol. 2003, 7, 55 https://doi.org/10.1016/S1367-5931(02)00005-4
  31. Shin, D. S.; Lee, K. N.; Jang, K. H.; Kim, J. K.; Chung, W. J.; Kim, Y. K.; Lee, Y. S. Biosens. Bioelectron. 2003, 19, 485 https://doi.org/10.1016/S0956-5663(03)00228-8
  32. Angenendt, P.; Glokler, J.; Murphy, D.; Lehrach, H.; Cahill, D. J. Anal. Biochem. 2002, 309, 253 https://doi.org/10.1016/S0003-2697(02)00257-9
  33. Angenendt, P.; Glokler, J.; Konthur, Z.; Lehrach, H.; Cahill, D. J. Anal. Chem. 2003, 75, 4368 https://doi.org/10.1021/ac034260l
  34. Kim, D.; Kwak, Y.-G.; Kang, S. H. Anal. Chim. Acta 2006, 577, 163 https://doi.org/10.1016/j.aca.2006.06.047
  35. MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760
  36. Peluso, P.; Wilson, D. S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy, D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M.; Witte, K.; Jung, L. S.; Wagner, P.; Nock, S. Anal. Biochem. 2003, 312, 113 https://doi.org/10.1016/S0003-2697(02)00442-6
  37. Nisnevitch, M.; Firer, M. A. J. Biochem. Biophys. Methods 2001, 49, 467 https://doi.org/10.1016/S0165-022X(01)00214-7
  38. Catimel, B.; Nerrie, M.; Lee, F. T.; Scott, A. M.; Ritter, G.; Welt, S.; Old, L. J.; Burgess, A. W.; Nice, E. C. J. Chromatogr. A 1997, 776, 15 https://doi.org/10.1016/S0021-9673(97)00087-3
  39. MacBeath, G.; Koehler, A. N.; Schreiber, S. L. J. Am. Chem. Soc. 1999, 121, 7967 https://doi.org/10.1021/ja991083q

Cited by

  1. New Insight on Bio-sensing by Nano-fabricated Memristors vol.1, pp.1-2, 2011, https://doi.org/10.1007/s12668-011-0002-9
  2. Applications of Multi-Terminal Memristive Devices: A Review vol.13, pp.2, 2013, https://doi.org/10.1109/MCAS.2013.2256258
  3. Memristive Biosensors Under Varying Humidity Conditions vol.13, pp.1, 2014, https://doi.org/10.1109/TNB.2013.2295517
  4. SiNW-FET in-Air Biosensors for High Sensitive and Specific Detection in Breast Tumor Extract vol.16, pp.10, 2016, https://doi.org/10.1109/JSEN.2015.2433836
  5. Visualizing chemical interactions in life sciences with wide-field fluorescence microscopy towards the single-molecule level vol.26, pp.10, 2007, https://doi.org/10.1016/j.trac.2007.09.007
  6. Unique Fluid Ensemble including Silicone Oil for the Application of Optical Liquid Lens vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.731
  7. Extra- and Intranuclear Dynamics and Distribution of Modified-PAMAM Polyplexes in Living Cells: A Single-Molecule Analysis vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1565
  8. Memristive-biosensors: A new detection method by using nanofabricated memristors vol.171, pp.None, 2007, https://doi.org/10.1016/j.snb.2012.04.089
  9. Surface trap mediated electronic transport in biofunctionalized silicon nanowires vol.27, pp.34, 2007, https://doi.org/10.1088/0957-4484/27/34/345503
  10. Ultra-sensitive biomolecular detection by external referencing optofluidic microbubble resonators vol.27, pp.9, 2019, https://doi.org/10.1364/oe.27.012424
  11. Particle tracking of nanoparticles in soft matter vol.127, pp.19, 2020, https://doi.org/10.1063/5.0003322