• Title/Summary/Keyword: Polymer-modified glass

Search Result 55, Processing Time 0.022 seconds

Effect of Glass Transition Temperature on Strength Properties of Polymer-Modified Mortar Using Polymer Dispersion (폴리머 분산계 혼입 폴리머 시멘트 모르타르의 강도에 대한 유리전이온도의 효과)

  • 송해룡;형원길;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1011-1016
    • /
    • 2001
  • The purpose of this study is to find out the effect of polymer glass transition temperature on mechanical properties of polymer latex-modified mortars in comparison with ordinary cement mortar. The Polymer latex-modified mortars are prepared with 5, 10, 15 and 20% of polymer cement ratio respectively, and properties of modified mortars such as air content, compressive, flexural and tensile strengths are tested. The test results indicate that the types of polymer dispersion and the polymer-cement ratio are very important factors to characterize the properties of polymer-modified mortars, and also the glass transition temperature of polymer dispersions has an important effect on the performance of polymer-modified mortars. The modifying effects of two kinds of polymer dispersion, St/BA-1 and SBR, are evaluated.

  • PDF

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

Strength Properties of Polymer-Modified Mortars Using Redispersible Polymer Powders (재유화형 분말수지를 이용한 폴리머 시멘트 모르터의 강도특성)

  • 김완기;형원길;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.88-92
    • /
    • 2001
  • This paper discusses the strength properties of the polymer-modified mortars using redispersible polymer powders, which is widely used for the manufacture of prepackaged-type polymer-modified mortar products at present. The polymer-modified mortars using redispersible polymer powders are prepared with various polymer-cement ratios, and tested for air content, flexural and compressive strengths, and tensile strength. The strength properties are almost the same as those of polymer dispersion-modified mortars, depending on the polymer-cement ratios, and are improved over unmodified mortar. In particular, between tensile strength and glass transition point of polymer powder have a high correlation. It is concluded from the test results that polymer-modified mortars using redispersible polymer powders can be used in the same manner as ordinary polymer dispersion-modified mortars.

  • PDF

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Properties of Polymer-Modified Mortars Using VAE Redispersible Powders

  • Joseph Ango, Aaron;Yang-Seob, Soh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.252-255
    • /
    • 2003
  • Recently, there is a growing trend in the United States toward replacing latex additives in polymer-modified cement mortars with redispersible polymer powders. This movement is relatively new in the U.S. but is further advanced in Europe due to the more extensive use of cement and concrete in residential construction. Hitherto, in Korea - there is a very diminutive movement towards this growing trend. Thus, there is limited availability of data on redispersible polymer powders. This study investigates the effectiveness of redispersible polymer powder on improvement of the mechanical properties of modified mortar. It was concluded from the results of the experiments that the size of the dispersed polymer particles, variations in glass transition points (Tg), and variations in minimum film formation temperature (MFT) influenced the strength development of the modified mortars, and optimum strength in modified mortars using redispersible powders can be achieved when the Tg which accounts for the degree of powder flexibility is considered.

  • PDF

Thickness Dependence of the Glass Transition Temperature in Thin Polymer Films

  • Lee, Jeong-Kyu;Zin, Wang-Cheol
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.201-201
    • /
    • 2006
  • In this study the glass transition temperature in thin polymer films has been studied. Ellipsometry has been used to measure $T_{g}$ of thin film as a function of film thickness. Empirical equation has been proposed to fit the measured $T_{g}$ pattern with thickness. Also, a continuous multilayer model was proposed and derived to describe the effect of surface on the observed $T_{g}$ reduction in thin films, and the depth-dependent $T_{g}$ profile was obtained. These results showed that $T_{g}$ at the top surface was much lower than the bulk $T_{g}$ and gradually approached the bulk $T_{g}$ with increasing distance from the edge of the film. The model and equation were modified to apply for the polymer coated on the strongly favorable substrate and the freely standing film.

  • PDF

GAS PERMEATION THROUGH GLASSY POLYMER MEMBRANES WITH HIGH GLASS-TRANSITION TEMPERATURE

  • Kumazawa, Hidehiro
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.13-20
    • /
    • 1993
  • The sorption equilibria and permeation rates for carbon dioxide in such glassy polymer membranes with high glass-transition temperature as polyimide, polyetherimide, polysulfone and polyethersulfone membranes, were measured. The sorption isotherms for these systems can be described well by the dual-mode sorption model, whereas the pressure dependences of the mean permeability coefficients are simulated better by a modified dual-mode mobility model than the conventional dual-mode mobility model in which the Henry's law and Langmuir populations execute four kinds of diffusive movement.

  • PDF

Effect of Acrylic Acid-modified Polyethylene Wax Using Sequential Reaction on Properties of Polyamide/Glass Fiber Composite (폴리아미드/유리섬유 복합재료의 물성에 대한 연속반응 아크릴산 변성 폴리에틸렌 왁스의 영향)

  • Kim, Hyochul;Kim, Hyung-Il;Han, Won-Hee;Hong, Min-Hyuk;Lee, Hyunwoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Polymer composites are widely used as industrial materials requiring high mechanical properties. Glass fibers and fillers, which are used as a reinforcement in composites, usually have some problems such as nonuniform dispersion and poor interfacial adhesion. In this study, an acrylic acid-modified polyethylene wax was synthesized by the sequential reaction of pyrolysis of polyethylene followed by grafting with a polar acrylic acid. The acrylic acid-modified polyethylene wax was applied to polymer composites of the polyamide matrix and glass fiber reinforcement. The effect of acrylic acid-modified polyethylene wax on physical properties of polyamide based composites was thoroughly investigated.

Synthesis and Characterization of Crosslinked Polyacrylates Containing Cubane and Silyl Groups

  • Mahkam Mehrdad;Assadi Mohammad;Mohammadzadeh Rana
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.34-37
    • /
    • 2006
  • Attaching the organosilyl groups to macromolecular chains of 2-hydroxyethyl methacrylate (HEMA) should lead to important modifications of polymer properties. t-$BuMe_{2}Si$ and cubane-l, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA is abbreviated as TSMA, while cubane-l ,4-dicarboxylic acid (CDA) linked to two HEMA groups is the cross-linking agent (CA). Free radical cross-linking copolymerization of TSMA and HEMA with various ratios of CA as the cross-linking agent was carried out at 60-70$^{circ}C$. The compositions of the cross-linked, three-dimensional polymers were determined by FTIR spectroscopy. The glass transition temperature ($T_{g}$) of the network polymers was determined calorimetrically. The $T_{g}$ of the network polymer increased with increasing cross-linking degree.

Flexural Behavior of Sandwich Panels Using MMA Modified Polymer and GFRP (GFRP보강 MMA개질 폴리머 모르타르 샌드위치 패널의 휨 거동)

  • 연규석;유근우;주명기;김남길;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.105-110
    • /
    • 2002
  • In this study, a MMA modified polymer mortal sandwich panels was developed : Core was made with the MMA modified polymer mortar whose compressive strength was about 1020 kgf/cm$^2$, and both facings were made with the glass fiber reinforced plastics (GFRP). The results showed that the strain energies increased 20-33 times, respectively, as the thicknesses of facings increased from 1.50 to 2.76 mm with fixing the core thickness to constants (30-50 mm). On the other hand, these values showed a tendency of decrease as the core thickness increased regardless of thickness of facings. A set of basic data for the structural analysis could be provided by investigating the correlations, within the scope of this research, between the resisting moment and the thicknesses of core and facings.

  • PDF