DOI QR코드

DOI QR Code

Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models

  • Published : 2007.06.20

Abstract

Mycobacterium tuberculosis is a pathogen responsible for 2-3 million deaths every year worldwide. The emergence of drug-resistant and multidrug-resistant tuberculosis has increased the need to identify new antituberculosis targets. Acetohydroxy acid synthase, (AHAS, EC 2.2.1.6), an enzyme involved in branched-chain amino acid synthesis, has recently been identified as a potential anti-tuberculosis target. To assist in the search for new inhibitors and “receptor-based” design of effective inhibitors of tubercular AHAS (TbAHAS), we constructed four different structural models of TbAHAS and used one of the models as a target for virtual screening of potential inhibitors. The quality of each model was assessed stereochemically by PROCHECK and found to be reliable. Up to 89% of the amino acid residues in the structural models were located in the most favored regions of the Ramachandran plot, which indicates that the conformation of each residue in the models is good. In the models, residues at the herbicide-binding site were highly conserved across 39 AHAS sequences. The binding mode of TbAHAS with a sulfonylurea herbicide was characterized by 32 hydrophobic interactions, the majority of which were contributed by residue Trp516. The model based on the highest resolution X-ray structure of yeast AHAS was used as the target for virtual screening of a chemical database containing 8300 molecules with a heterocyclic ring. We developed a short list of molecules that were predicted to bind with high scores to TbAHAS in a conformation similar to that of sulfonylurea derivatives. Five sulfonylurea herbicides that were calculated to efficiently bind TbAHAS were experimentally verified and found to inhibit enzyme activity at micromolar concentrations. The data suggest that this time-saving and costeffective computational approach can be used to discover new TbAHAS inhibitors. The list of chemicals studied in this work is supplied to facilitate independent experimental verification of the computational approach.

Keywords

References

  1. Hwang, J. H.; Kim, J. M.; Kim, Y. T.; Choi, J. D.; Yoon, M. Y. Bull. Korean Chem. Soc. 2003, 24, 1856 https://doi.org/10.5012/bkcs.2003.24.12.1856
  2. Kim, J. M.; Kim, J. R.; Kim, Y. T.; Choi, J. D.; Yoon, M. Y. Bull. Korean Chem. Soc. 2004, 25, 721 https://doi.org/10.5012/bkcs.2004.25.5.721
  3. Le, D. T.; Choi, J. D. Bull. Korean Chem. Soc. 2005, 26, 916 https://doi.org/10.5012/bkcs.2005.26.6.916
  4. Karim, M.; Shim, M. Y.; Kim, J. M.; Choi, K. J.; Kim, J. R.; Choi, J. D.; Yoon, M. Y. Bull. Korean Chem. Soc. 2006, 27, 549 https://doi.org/10.5012/bkcs.2006.27.4.549
  5. Bange, F. C.; Brown, A. M.; Jacobs, W. R. Jr. Infect. Immun. 1996, 64, 1794
  6. Grandoni, J. A.; Marta, P. T.; Schloss, J. V. J. Antimicrob. Chemother. 1998, 42, 475 https://doi.org/10.1093/jac/42.4.475
  7. Zohar, Y.; Einav, M.; Chipman, D. M.; Barak, Z. Biochim. Biophys. Acta 2003, 1649, 97 https://doi.org/10.1016/S1570-9639(03)00160-2
  8. Boigegrain, R. A.; Liautard, J. P.; Kohler, S. Antimicrob Agents Chemother. 2005, 49, 3922 https://doi.org/10.1128/AAC.49.9.3922-3925.2005
  9. Choi, K. J.; Yu, Y. G.; Hahn, H. G.; Choi, J. D.; Yoon, M. Y. FEBS Lett. 2005, 579, 4903 https://doi.org/10.1016/j.febslet.2005.07.055
  10. McGovern, S. L.; Caselli, E.; Grigorieff, N.; Shoichet, B. K. J. Med. Chem. 2002, 45, 1712 https://doi.org/10.1021/jm010533y
  11. Shoichet, B. K. Nature 2004, 432, 862 https://doi.org/10.1038/nature03197
  12. Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J. Curr. Opin. Chem. Biol. 2002, 6, 439 https://doi.org/10.1016/S1367-5931(02)00339-3
  13. Itzstein, M. von; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Nature 1993, 363, 418
  14. Varney, M. D.; Marzoni, G. P.; Palmer, C. L.; Deal, J. G.; Welsh, S. K. M.; Bacquet, R. J.; Bartlett, C. A.; Morse, C. A.; Booth, C. L. J.; Herrmann, S. M.; Howland, E. F.; Ward, R. W.; White, J. J. Med. Chem. 1992, 35, 663 https://doi.org/10.1021/jm00082a006
  15. Schapira, M.; Raaka, B. M.; Das, S.; Fan, L.; Totrov, M.; Zhou, Z.; Wilson, S. R.; Abagyan, R.; Samuels, H. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 7354 https://doi.org/10.1073/pnas.1131854100
  16. Evers, A.; Klebe, G. Angew. Chem. Int. Ed. 2004, 43, 248 https://doi.org/10.1002/anie.200352776
  17. Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M. C. Nucleic Acids Res. 2003, 31, 3381 https://doi.org/10.1093/nar/gkg520
  18. Shoichet, B.; Bodian, D. L.; Kuntz, I. D. J. Comput. Chem. 1992, 13, 380 https://doi.org/10.1002/jcc.540130311
  19. Lorber, D. M.; Udo, M. K.; Shoichet, B. K. Protein Sci. 2002, 11, 1393 https://doi.org/10.1110/ps.2830102
  20. Irwin, J. J.; Shoichet, B. K. J. Chem. Inf. Model. 2005, 45, 177 https://doi.org/10.1021/ci049714+
  21. Hall, T. A. Nucleic Acids Symp. Ser. 1999, 41, 95
  22. Le, D. T.; Yoon, M.-Y.; Kim, Y. T.; Choi, J.-D. Biophys. Res. Commun. 2004, 317, 930 https://doi.org/10.1016/j.bbrc.2004.03.133
  23. Richards, F. Annu. Rev. Biophys. Bioeng. 1977, 6, 151 https://doi.org/10.1146/annurev.bb.06.060177.001055
  24. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605 https://doi.org/10.1002/jcc.20084
  25. Pedretti, A.; Villa, L.; Vistoli,G. J. Comp. Aid. Mol. Des. 2004, 18, 167 https://doi.org/10.1023/B:JCAM.0000035186.90683.f2
  26. Vriend, G. J. Mol. Graph. 1990, 8, 52 https://doi.org/10.1016/0263-7855(90)80070-V
  27. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 283 https://doi.org/10.1107/S0021889892009944
  28. Duggleby, R. G.; Pang, S. S. J. Biochem. Mol. Biol. 2000, 33, 1
  29. Chong, C. K.; Choi, J. D. Biochem. Biophys. Res. Commun. 2000, 279, 462 https://doi.org/10.1006/bbrc.2000.3958
  30. Jung, S.-M.; Le, D. T.; Yoon, S.-S.; Yoon, M.-Y.; Kim, Y. T.; Choi, J.-D. Biochem. J. 2004, 383, 53 https://doi.org/10.1042/BJ20040720
  31. Yoon, T. Y.; Chung, S. M.; Chang, S. I.; Yoon, M. Y.; Hahn, T. R.; Choi, J. D. Biochem. Biophys. Res. Commun. 2002, 293, 433 https://doi.org/10.1016/S0006-291X(02)00249-8
  32. Le, D. T.; Yoon, M.-Y.; Kim, Y. T.; Choi, J.-D. Biochem. Biophys. Res. Commun. 2003, 306, 1075 https://doi.org/10.1016/S0006-291X(03)01098-2
  33. Oh, K. J.; Park, E. J.; Yoon, M. Y.; Han, T. R.; Choi, J. D. Biochem. Biophys. Res. Commun. 2001, 282, 1237 https://doi.org/10.1006/bbrc.2001.4714
  34. Le, D. T.; Yoon, M.-Y.; Kim, Y. T.; Choi, J.-D. BBA-Proteins and Proteomics 2005, 1749, 103 https://doi.org/10.1016/j.bbapap.2005.02.012
  35. Le, D. T.; Yoon, M. Y.; Kim, Y. T.; Choi, J. D. J. Biochemistry (Tokyo) 2005, 138, 35 https://doi.org/10.1093/jb/mvi099
  36. Chong, C. K.; Shin, H. J.; Chang, S. I.; Choi, J. D. Biochem. Biophys. Res. Commun. 1999, 259, 136 https://doi.org/10.1006/bbrc.1999.0740
  37. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Prot. Eng. 1995, 8, 127 https://doi.org/10.1093/protein/8.2.127
  38. Cleland, W. W. Methods Enzymol. 1979, 63, 103 https://doi.org/10.1016/0076-6879(79)63008-2
  39. Frieden, T. R.; Sterling, T. R.; Munsiff, S. S.; Watt, C. J.; Dye, C. Lancet. 2003, 362, 887 https://doi.org/10.1016/S0140-6736(03)14333-4
  40. Barnes, P. F.; Cave, M. D. N. Engl. J. Med. 2003, 349, 1149 https://doi.org/10.1056/NEJMra021964
  41. Xu, S.; Yang, Y.; Jin, R.; Zhang, M.; Wang, H. Protein Expr. Purif. 2006, in press
  42. Maxwell, A. Trends Microbiol. 1997, 5, 102 https://doi.org/10.1016/S0966-842X(96)10085-8
  43. Fonseca, I. O.; Magalhaes, M. L.; Oliveira, J. S.; Silva, R. G.; Mendes, M. A.; Palma, M. S.; Santos, D. S.; Basso, L. A. Protein Expr. Purif. 2006, 46, 429 https://doi.org/10.1016/j.pep.2005.10.004
  44. Irwin, J. J.; Raushel, F. M.; Shoichet, B. K. Biochemistry 2005, 44, 12316 https://doi.org/10.1021/bi050801k

Cited by

  1. Structure and Functional Effect of Tryptophan Mutants of Nicotiana tabacum Acetohydroxyacid Synthase vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1823
  2. Site-directed mutagenesis of catalytic and regulatory subunits of Mycobacterium tuberculosis acetohydroxyacid synthase vol.46, pp.3, 2007, https://doi.org/10.1016/j.enzmictec.2009.12.003