References
- O'Regan, B.; Grätzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
- Gratzel, M. Nature 2001, 414, 338 https://doi.org/10.1038/35104607
- Hagfelt, A.; Grätzel, M. Acc. Chem. Res. 2000, 33, 269 https://doi.org/10.1021/ar980112j
- Robertson, A. Angew. Chem. Int. Ed. 2006, 45, 2338 https://doi.org/10.1002/anie.200503083
- Peter, L. M.; Riley, D. J.; Tull, E. Z.; Wijayantha, K. G. U. Chem. Commun. 2002, 1030
- Wijayantha, K. G. U.; Peter, L. M.; Otley, L. C. Sol. Energy Mater. Sol. Cell 2004, 83, 363 https://doi.org/10.1016/j.solmat.2003.12.011
- Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U. J. Phys. Chem. B 2002, 106, 7578 https://doi.org/10.1021/jp020453l
- Hoyer, P.; Konenkamp, R. Appl. Phys. Lett. 1995, 66, 349 https://doi.org/10.1063/1.114209
- Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183 https://doi.org/10.1021/j100063a022
- Zaban, A.; Micic, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, 3153 https://doi.org/10.1021/la9713863
- Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. J. Phys. Chem. B 2003, 107, 8378 https://doi.org/10.1021/jp030334l
- Nozik, A. J. Physica E 2002, 14, 115 https://doi.org/10.1016/S1386-9477(02)00374-0
- Lee, S. S.; Seo, K. W.; Yoon, S. H.; Shim, I.-W.; Byun, K.-T.; Kwak, H.-Y. Bull. Korean Chem. Soc. 2005, 26, 1579 https://doi.org/10.5012/bkcs.2005.26.10.1579
- Shin, Y.-J.; Kim, K. S.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2005, 26, 1929 https://doi.org/10.5012/bkcs.2005.26.12.1929
- Kim, K. S.; Kang, Y.-S.; Lee, J.-H.; Shin, Y.- J.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 295 https://doi.org/10.5012/bkcs.2006.27.2.295
- Kim, K. M.; Park, N.-G.; Kang, M. G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 322 https://doi.org/10.5012/bkcs.2006.27.2.322
- Kang, M. S.; Oh, J. B.; Roh, S. G.; Kim, M.-R.; Lee, J. K.; Jin, S.-H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 33 https://doi.org/10.5012/bkcs.2007.28.1.033
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385 https://doi.org/10.1021/ja056494n
- Robel, I.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2007, 129, 4136 https://doi.org/10.1021/ja070099a
- Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451 https://doi.org/10.1021/jp064817b
- Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
- Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
- Chan, W. C. W.; Nie, S. M. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
- Tessler, N.; Medvedev, V.; Kazes, M.; Banin, U. Science 2002, 295, 1506 https://doi.org/10.1126/science.1068153
- Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J. Science 2000, 290, 314 https://doi.org/10.1126/science.290.5490.314
- Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425 https://doi.org/10.1126/science.1069156
- Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601 https://doi.org/10.1103/PhysRevLett.92.186601
- Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5, 865 https://doi.org/10.1021/nl0502672
- Aldana, J.; Wang, A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 8844 https://doi.org/10.1021/ja016424q
- Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854 https://doi.org/10.1021/cm034081k
- Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093 https://doi.org/10.1021/jp047777p
- Tang, J.; Birkedal, H.; McFarland, E. W.; Stucky, G. D. Chem. Commun. 2003, 2278
- Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613
- Blackburn, J. L.; Selmarten, D. C.; Ellingson, R. J.; Jones, M.; Micic, O. I.; Nozik, A. J. J. Phys. Chem. B 2005, 109, 2625 https://doi.org/10.1021/jp046781y
- Sachs, S. B.; Dudek, S. P.; Hsung, R. P.; Sita, L. R.; Smalley, J. F.; Newton, M. D.; Feldberg, S. W.; Chidsey, C. E. D. J. Am. Chem. Soc. 1997, 119, 10563 https://doi.org/10.1021/ja972244y
- Park, S.-M.; Barber, M. E. J. Electroanal. Chem. 1979, 99, 67
- Wilson, J. R.; Park, S.-M. J. Electrochem. Soc. 1982, 129, 149
- Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583 https://doi.org/10.1038/26936
- Sharma, S. N.; Pillai, Z. S.; Kamat, P. V. J. Phys. Chem. B 2003, 107, 10088 https://doi.org/10.1021/jp034109f
- Blackburn, J. L.; Selmarten, D. C.; Nozik, A. J. J. Phys. Chem. B 2003, 107, 14154 https://doi.org/10.1021/jp0366771
- Sant, P. A.; Kamat, P. V. Phys. Chem. Chem. Phys. 2002, 4, 198 https://doi.org/10.1039/b107544f
Cited by
- CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity vol.112, pp.30, 2008, https://doi.org/10.1021/jp802572b
- CdSe Sensitized ZnO nanowire/polymer based p-i-n Heterojunction Solar Cell vol.1178, pp.1946-4274, 2009, https://doi.org/10.1557/PROC-1178-AA10-09
- Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer vol.21, pp.41, 2011, https://doi.org/10.1039/c1jm13616j
- CdS<sub>x</sub>Se<sub>y</sub>/TiO<sub>2</sub> Solar Cell Prepared with Sintered Mixture Deposition vol.02, pp.01, 2012, https://doi.org/10.4236/ojpc.2012.21007
- On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells vol.15, pp.38, 2013, https://doi.org/10.1039/c3cp52858h
- Selected parameters leading to an optimized DSSC performance vol.49, pp.7, 2013, https://doi.org/10.1134/S1023193513070045
- The Dynamic Resistance of CdS/CdSe/ZnS Co-Sensitized TiO2 Solar Cells vol.44, pp.6, 2014, https://doi.org/10.1007/s13538-014-0266-y
- /CdS (Silar)/CdSe(Colloid)/Zns(Silar) photoanodes vol.34, pp.6, 2015, https://doi.org/10.1002/ep.12150
- Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dot-sensitized ZnO nanorods vol.20, pp.2, 2016, https://doi.org/10.1007/s10008-015-3075-5
- Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime vol.45, pp.20, 2016, https://doi.org/10.1039/C6DT00283H
- Double-Sided Transparent TiO2 Nanotube/ITO Electrodes for Efficient CdS/CuInS2 Quantum Dot-Sensitized Solar Cells vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-016-1787-9
- Cadmium sulphide/cadmium selenide quantum dot solar cells with inexpensive electrodeposited silver/polyaniline composite counter-electrode vol.9, pp.6, 2017, https://doi.org/10.1063/1.4986223
- Synthesis and Optical Properties of CdSe Nano-crystals: Effective Use of Organoselenium Compound in Nanochemistry vol.38, pp.5, 2008, https://doi.org/10.1080/15533170802216114
- Effect of Mn Doping on Multilayer PbS Quantum Dots Sensitized Solar Cell pp.2156-3403, 2018, https://doi.org/10.1109/JPHOTOV.2018.2861748
- Cu-doped CdS QDs for sensitisation in solar cell vol.13, pp.8, 2018, https://doi.org/10.1049/mnl.2017.0816
- A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells vol.19, pp.16, 2009, https://doi.org/10.1039/b817000b
- One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: E = Se, Te) nano-crystals vol.12, pp.1, 2010, https://doi.org/10.1007/s11051-008-9581-y
- Photovoltaics literature survey (No. 58) vol.15, pp.8, 2007, https://doi.org/10.1002/pip.804
- Surfactant Induced Photostability Enhancements of Thiol Coated Quantum Dot Nanocolloids vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.249
- Preparation, Characterization and Toxicological Impacts of Monodisperse Quantum Dot Nanocolloids in Aqueous Solution vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.303
- The Synthesis of a High Yield PbSe Quantum Dots by Hot Solution Method vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1729
- Electrochemistry of conductive polymers : 41. Effects of self-assembled monolayers of aminothiophenols on polyaniline films vol.53, pp.11, 2007, https://doi.org/10.1016/j.electacta.2007.08.076
- Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.129
- CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment vol.113, pp.10, 2007, https://doi.org/10.1021/jp808091d
- A Computational Study on the Adsorption Configurations and Reactions of Phosphorous Acid on TiO2 Anatase (101) and Rutile (110) Surfaces vol.113, pp.19, 2009, https://doi.org/10.1021/jp900747p
- Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells vol.11, pp.12, 2009, https://doi.org/10.1016/j.elecom.2009.10.003
- Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells vol.110, pp.11, 2007, https://doi.org/10.1021/cr100243p
- CdSe Quantum-Dot-Sensitized Solar Cell with ∼100% Internal Quantum Efficiency vol.4, pp.11, 2007, https://doi.org/10.1021/nn101319x
- Visible light responsive titania-based nanostructures for photocatalytic, photovoltaic and photoelectrochemical applications vol.3, pp.2, 2012, https://doi.org/10.1088/2043-6262/3/2/023001
- Quenching of coumarin emission by CdSe and CdSe/ZnS quantum dots: Implications for fluorescence reporting vol.141, pp.None, 2013, https://doi.org/10.1016/j.jlumin.2013.03.027
- High‐Speed Colloidal Quantum Dot Photodiodes via Accelerating Charge Separation at Metal–Oxide Interface vol.15, pp.13, 2007, https://doi.org/10.1002/smll.201900008
- Quantum dot sensitized solar cell design with surface passivized CdSeTe QDs vol.206, pp.None, 2007, https://doi.org/10.1016/j.solener.2020.06.002