DOI QR코드

DOI QR Code

Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells

  • Lee, Hyo-Joong (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Kim, Dae-Young (On Leave from Department of Chemistry, Hallym University) ;
  • Yoo, Jung-Suk (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Bang, Ji-Won (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Kim, Sung-Jee (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology)
  • Published : 2007.06.20

Abstract

Anchoring quantum dots (QDs) onto thermodynamically stable, large band gap oxide semiconductors is a very important strategy to enhance their quantum yields for solar energy conversion in both visible and near-IR regions. We describe a general procedure for anchoring a few chalcogenide QDs onto the titanium oxide layer. To anchor the colloidal QDs onto a mesoporous TiO2 layer, linker molecules containing both carboxylate and thiol functional groups were initially attached to TiO2 layers and subsequently used to capture dispersed QDs with the thiol group. Employing the procedure, we exploited cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) as inorganic sensitizers for a large band gap TiO2 layer of dye-sensitized solar cells (DSSCs). Their attachment was confirmed by naked eyes, absorption spectra, and photovoltaic effects. A few QD-TiO2 systems thus obtained have been characterized for photoelectrochemical solar energy conversion.

Keywords

References

  1. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  2. Gratzel, M. Nature 2001, 414, 338 https://doi.org/10.1038/35104607
  3. Hagfelt, A.; Grätzel, M. Acc. Chem. Res. 2000, 33, 269 https://doi.org/10.1021/ar980112j
  4. Robertson, A. Angew. Chem. Int. Ed. 2006, 45, 2338 https://doi.org/10.1002/anie.200503083
  5. Peter, L. M.; Riley, D. J.; Tull, E. Z.; Wijayantha, K. G. U. Chem. Commun. 2002, 1030
  6. Wijayantha, K. G. U.; Peter, L. M.; Otley, L. C. Sol. Energy Mater. Sol. Cell 2004, 83, 363 https://doi.org/10.1016/j.solmat.2003.12.011
  7. Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U. J. Phys. Chem. B 2002, 106, 7578 https://doi.org/10.1021/jp020453l
  8. Hoyer, P.; Konenkamp, R. Appl. Phys. Lett. 1995, 66, 349 https://doi.org/10.1063/1.114209
  9. Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183 https://doi.org/10.1021/j100063a022
  10. Zaban, A.; Micic, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, 3153 https://doi.org/10.1021/la9713863
  11. Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. J. Phys. Chem. B 2003, 107, 8378 https://doi.org/10.1021/jp030334l
  12. Nozik, A. J. Physica E 2002, 14, 115 https://doi.org/10.1016/S1386-9477(02)00374-0
  13. Lee, S. S.; Seo, K. W.; Yoon, S. H.; Shim, I.-W.; Byun, K.-T.; Kwak, H.-Y. Bull. Korean Chem. Soc. 2005, 26, 1579 https://doi.org/10.5012/bkcs.2005.26.10.1579
  14. Shin, Y.-J.; Kim, K. S.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2005, 26, 1929 https://doi.org/10.5012/bkcs.2005.26.12.1929
  15. Kim, K. S.; Kang, Y.-S.; Lee, J.-H.; Shin, Y.- J.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 295 https://doi.org/10.5012/bkcs.2006.27.2.295
  16. Kim, K. M.; Park, N.-G.; Kang, M. G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 322 https://doi.org/10.5012/bkcs.2006.27.2.322
  17. Kang, M. S.; Oh, J. B.; Roh, S. G.; Kim, M.-R.; Lee, J. K.; Jin, S.-H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 33 https://doi.org/10.5012/bkcs.2007.28.1.033
  18. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385 https://doi.org/10.1021/ja056494n
  19. Robel, I.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2007, 129, 4136 https://doi.org/10.1021/ja070099a
  20. Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451 https://doi.org/10.1021/jp064817b
  21. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
  22. Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  23. Chan, W. C. W.; Nie, S. M. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  24. Tessler, N.; Medvedev, V.; Kazes, M.; Banin, U. Science 2002, 295, 1506 https://doi.org/10.1126/science.1068153
  25. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J. Science 2000, 290, 314 https://doi.org/10.1126/science.290.5490.314
  26. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425 https://doi.org/10.1126/science.1069156
  27. Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601 https://doi.org/10.1103/PhysRevLett.92.186601
  28. Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5, 865 https://doi.org/10.1021/nl0502672
  29. Aldana, J.; Wang, A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 8844 https://doi.org/10.1021/ja016424q
  30. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854 https://doi.org/10.1021/cm034081k
  31. Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093 https://doi.org/10.1021/jp047777p
  32. Tang, J.; Birkedal, H.; McFarland, E. W.; Stucky, G. D. Chem. Commun. 2003, 2278
  33. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613
  34. Blackburn, J. L.; Selmarten, D. C.; Ellingson, R. J.; Jones, M.; Micic, O. I.; Nozik, A. J. J. Phys. Chem. B 2005, 109, 2625 https://doi.org/10.1021/jp046781y
  35. Sachs, S. B.; Dudek, S. P.; Hsung, R. P.; Sita, L. R.; Smalley, J. F.; Newton, M. D.; Feldberg, S. W.; Chidsey, C. E. D. J. Am. Chem. Soc. 1997, 119, 10563 https://doi.org/10.1021/ja972244y
  36. Park, S.-M.; Barber, M. E. J. Electroanal. Chem. 1979, 99, 67
  37. Wilson, J. R.; Park, S.-M. J. Electrochem. Soc. 1982, 129, 149
  38. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583 https://doi.org/10.1038/26936
  39. Sharma, S. N.; Pillai, Z. S.; Kamat, P. V. J. Phys. Chem. B 2003, 107, 10088 https://doi.org/10.1021/jp034109f
  40. Blackburn, J. L.; Selmarten, D. C.; Nozik, A. J. J. Phys. Chem. B 2003, 107, 14154 https://doi.org/10.1021/jp0366771
  41. Sant, P. A.; Kamat, P. V. Phys. Chem. Chem. Phys. 2002, 4, 198 https://doi.org/10.1039/b107544f

Cited by

  1. CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity vol.112, pp.30, 2008, https://doi.org/10.1021/jp802572b
  2. CdSe Sensitized ZnO nanowire/polymer based p-i-n Heterojunction Solar Cell vol.1178, pp.1946-4274, 2009, https://doi.org/10.1557/PROC-1178-AA10-09
  3. Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer vol.21, pp.41, 2011, https://doi.org/10.1039/c1jm13616j
  4. CdS<sub>x</sub>Se<sub>y</sub>/TiO<sub>2</sub> Solar Cell Prepared with Sintered Mixture Deposition vol.02, pp.01, 2012, https://doi.org/10.4236/ojpc.2012.21007
  5. On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells vol.15, pp.38, 2013, https://doi.org/10.1039/c3cp52858h
  6. Selected parameters leading to an optimized DSSC performance vol.49, pp.7, 2013, https://doi.org/10.1134/S1023193513070045
  7. The Dynamic Resistance of CdS/CdSe/ZnS Co-Sensitized TiO2 Solar Cells vol.44, pp.6, 2014, https://doi.org/10.1007/s13538-014-0266-y
  8. /CdS (Silar)/CdSe(Colloid)/Zns(Silar) photoanodes vol.34, pp.6, 2015, https://doi.org/10.1002/ep.12150
  9. Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dot-sensitized ZnO nanorods vol.20, pp.2, 2016, https://doi.org/10.1007/s10008-015-3075-5
  10. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime vol.45, pp.20, 2016, https://doi.org/10.1039/C6DT00283H
  11. Double-Sided Transparent TiO2 Nanotube/ITO Electrodes for Efficient CdS/CuInS2 Quantum Dot-Sensitized Solar Cells vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-016-1787-9
  12. Cadmium sulphide/cadmium selenide quantum dot solar cells with inexpensive electrodeposited silver/polyaniline composite counter-electrode vol.9, pp.6, 2017, https://doi.org/10.1063/1.4986223
  13. Synthesis and Optical Properties of CdSe Nano-crystals: Effective Use of Organoselenium Compound in Nanochemistry vol.38, pp.5, 2008, https://doi.org/10.1080/15533170802216114
  14. Effect of Mn Doping on Multilayer PbS Quantum Dots Sensitized Solar Cell pp.2156-3403, 2018, https://doi.org/10.1109/JPHOTOV.2018.2861748
  15. Cu-doped CdS QDs for sensitisation in solar cell vol.13, pp.8, 2018, https://doi.org/10.1049/mnl.2017.0816
  16. A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells vol.19, pp.16, 2009, https://doi.org/10.1039/b817000b
  17. One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: E = Se, Te) nano-crystals vol.12, pp.1, 2010, https://doi.org/10.1007/s11051-008-9581-y
  18. Photovoltaics literature survey (No. 58) vol.15, pp.8, 2007, https://doi.org/10.1002/pip.804
  19. Surfactant Induced Photostability Enhancements of Thiol Coated Quantum Dot Nanocolloids vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.249
  20. Preparation, Characterization and Toxicological Impacts of Monodisperse Quantum Dot Nanocolloids in Aqueous Solution vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.303
  21. The Synthesis of a High Yield PbSe Quantum Dots by Hot Solution Method vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1729
  22. Electrochemistry of conductive polymers : 41. Effects of self-assembled monolayers of aminothiophenols on polyaniline films vol.53, pp.11, 2007, https://doi.org/10.1016/j.electacta.2007.08.076
  23. Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.129
  24. CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment vol.113, pp.10, 2007, https://doi.org/10.1021/jp808091d
  25. A Computational Study on the Adsorption Configurations and Reactions of Phosphorous Acid on TiO2 Anatase (101) and Rutile (110) Surfaces vol.113, pp.19, 2009, https://doi.org/10.1021/jp900747p
  26. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells vol.11, pp.12, 2009, https://doi.org/10.1016/j.elecom.2009.10.003
  27. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells vol.110, pp.11, 2007, https://doi.org/10.1021/cr100243p
  28. CdSe Quantum-Dot-Sensitized Solar Cell with ∼100% Internal Quantum Efficiency vol.4, pp.11, 2007, https://doi.org/10.1021/nn101319x
  29. Visible light responsive titania-based nanostructures for photocatalytic, photovoltaic and photoelectrochemical applications vol.3, pp.2, 2012, https://doi.org/10.1088/2043-6262/3/2/023001
  30. Quenching of coumarin emission by CdSe and CdSe/ZnS quantum dots: Implications for fluorescence reporting vol.141, pp.None, 2013, https://doi.org/10.1016/j.jlumin.2013.03.027
  31. High‐Speed Colloidal Quantum Dot Photodiodes via Accelerating Charge Separation at Metal–Oxide Interface vol.15, pp.13, 2007, https://doi.org/10.1002/smll.201900008
  32. Quantum dot sensitized solar cell design with surface passivized CdSeTe QDs vol.206, pp.None, 2007, https://doi.org/10.1016/j.solener.2020.06.002