DOI QR코드

DOI QR Code

Ab initio Studies on Acene Tetramers: Herringbone Structure

  • Park, Young-Hee (Department of Chemistry, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Nano & Advanced Materials and Engineering Research Institute, Gyeongsang National University)
  • Published : 2007.08.20

Abstract

The structures, energetics and transfer integrals of the acene tetramers up to pentacene are investigated with the ab initio molecular orbital method at the level of second-order Møller-Plesset perturbation theory (MP2). Calculated geometries for the herringbone-style structures found in the crystal structure were characterized as local minima, however the geometrical discrepancy between crystal and MP2 theoretical structure is reasonably small. The binding energy of pentacene tetramer was calculated up to 40 kcal/mol (MP2/6-31G(d)) and about 90 kcal/mol (MP2/aug-cc-pVDZ), and the latter seems to be too much overestimated. The tendency of the hole transfer integrals computed with ab initio MP2/3-21G(d) geometry is well agreement with those estimated with crystal structure with some discrepancy, and the gradual increment of the transfer integrals at the crystal geometry is attributed to mainly packing structure rather than the intrinsic property of acene such as a size of acene.

Keywords

References

  1. Merlo, J. A.; Newman, C. R.; Gerlach, C. P.; Kelly, T. W.; Muyres, D. V.; Fritz, S. E.; Toney, M. F.; Frisbie, C. D. J. Am. Chem. Soc. 2005, 127, 3997 https://doi.org/10.1021/ja044078h
  2. Chen, F.-C.; Chu, C.-W.; He, C.; Yang, Y. Appl. Phys. Lett. 2004, 85, 3295 https://doi.org/10.1063/1.1806283
  3. Reese, C.; Roberts, M.; Ling, M. M.; Bao, Z. Mater. Today 2004, 7, 20
  4. Bredas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971 https://doi.org/10.1021/cr040084k
  5. Cornil, J.; Calbert, J.-P.; Beljonne, D.; Silbey, R.; Bredas, J.-L. Adv. Mater. 2000, 12, 978
  6. Sheraw, C. D.; Zhou, L.; Huang, J. R.; Gundlach, D. J.; Jackson, T. N.; Kane, M. G.; Hill, I. G.; Hammond, M. S.; Campi, J.; Greening, B. K.; Francl, J.; West, J. Appl. Phys. Lett. 2002, 80, 1088 https://doi.org/10.1063/1.1448659
  7. Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Science 1999, 283, 822 https://doi.org/10.1126/science.283.5403.822
  8. Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastata, P. Science 1994, 265, 1684 https://doi.org/10.1126/science.265.5179.1684
  9. Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599 https://doi.org/10.1103/RevModPhys.65.599
  10. Bixon, M.; Jortiner, J. Electron Transfer: From Isolated Molecules to Biomolecules, Adv. Chem. Phys. 106-107; Wiley: New York, 1999
  11. Bredas, J.-L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Proc. Natl. Acad. Sci. USA 2002, 99, 5804 https://doi.org/10.1073/pnas.092143399
  12. Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2006, 110, 10656 https://doi.org/10.1021/jp0610416
  13. Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. J. Am. Chem. Soc. 2002, 124, 10887 https://doi.org/10.1021/ja025896h
  14. Gonzales, C.; Lim, E. C. J. Phys. Chem. A 2001, 105, 1904 https://doi.org/10.1021/jp0015776
  15. Walsh, T. R. Chem. Phys. Lett. 2002, 363, 45 https://doi.org/10.1016/S0009-2614(02)01147-8
  16. Gonzales, C.; Lim, E. C. J. Phys. Chem. A 2001, 105, 1904 https://doi.org/10.1021/jp0015776
  17. Engkvist, O.; Hobza, P.; Selzle, H. L.; Schlag, E. W. J. Chem. Phys. 1999, 110, 5758 https://doi.org/10.1063/1.478474
  18. Tauer, T. P.; Sherrill, C. D. J. Phys. Chem. A 2005, 109, 10475 https://doi.org/10.1021/jp0553479
  19. Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318 https://doi.org/10.1021/ja0397916
  20. Johnson, E. R.; Wolkow, R. A.; Dilabio, G. A. Chem. Phys. Lett. 2004, 394, 334 https://doi.org/10.1016/j.cplett.2004.07.029
  21. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479
  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian: Pittsburgh, PA, 2003
  23. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007 https://doi.org/10.1063/1.456153
  24. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553 https://doi.org/10.1080/00268977000101561
  25. Cheng, Y. C.; Silbey, R. J.; da Silva Filho, D. A.; Calbert, J. P.; Cornil, J.; Bredas, J.-L. J. Chem. Phys. 2003, 118, 3764 https://doi.org/10.1063/1.1539090
  26. Lommerse, J. P.; Motherwell, W. D.; Ammon, H. L.; Dunitz, J. D.; Gavezzotti, A.; Hofmann, D. W.; Leusen, F. J.; Mooij, W. T.; Price, S. L.; Schweizer, B.; Schmidt, M. U.; van Eijck, B. P.; Verwer, P.; Williams, D. E. Acta Crystallogr. Sect B: Struct. Sci. 2000, 56, 697 https://doi.org/10.1107/S0108768100004584
  27. Ponomarev, V. I.; Filipenko, O. S.; Atovmyan, L. O. Kristallografiya 1976, 21, 392
  28. Brock, C. P.; Dunitz, J. D. Acta Crystallogr. Sect B: Struct. Sci. 1990, 46, 795 https://doi.org/10.1107/S0108768190008382
  29. Holmes, D.; Kumaraswamy, S.; Matzger, A. J.; Vollhardt, K. P. C. Chem-Eur. J. 1999, 5, 3399
  30. Fujiwara, T.; Lim, E. C. J. Phys. Chem. A 2003, 107, 4381 https://doi.org/10.1021/jp022605i
  31. Krause, H.; Ermstberger, B.; Neusser, H. J. Chem. Phys. Lett. 1991, 184, 411 https://doi.org/10.1016/0009-2614(91)80010-U
  32. Cornil, J.; Calbert, J. Ph.; Bredas, J.-L. J. Am. Chem. Soc. 2001, 123, 1250

Cited by

  1. Flux-Selected Titanyl Phthalocyanine Monolayer Architecture on Ag (111) vol.112, pp.47, 2008, https://doi.org/10.1021/jp8063678
  2. Theoretical Studies on 2-Hexylthieno[3,2-b]thiophene End-Capped Oligomers for Organic Semiconductor Materials vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1213
  3. Phase Behavior and Molecular Packing of Octadecyl Phenols and their Methyl Ethers at the Air/Water Interface vol.30, pp.20, 2014, https://doi.org/10.1021/la404340h
  4. Thermally activated dewetting of organic thin films: the case of pentacene on SiO2 and gold vol.95, pp.1, 2009, https://doi.org/10.1007/s00339-008-5011-3
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Predictions of Hole Mobility in Molecular Organic Crystals: Incorporating Thermal Effects vol.113, pp.16, 2007, https://doi.org/10.1021/jp8086978
  7. Theoretical Studies on Dicyanoanthracenes as Organic Semiconductor Materials: Reorganization Energy vol.31, pp.6, 2007, https://doi.org/10.5012/bkcs.2010.31.6.1649
  8. Homoleptic phosphorescent cyclometalated iridium(III) complexes with charge transporting groups: a theoretical study vol.39, pp.5, 2013, https://doi.org/10.1080/08927022.2012.735770
  9. Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1,2,3-benzotriazolate anions in layered double hydroxides: In situ X-ray diffraction study vol.233, pp.None, 2007, https://doi.org/10.1016/j.jssc.2015.10.023