• Title/Summary/Keyword: Hole/electron transfer rate

Search Result 6, Processing Time 0.022 seconds

Ab initio Studies on Acene Tetramers: Herringbone Structure

  • Park, Young-Hee;Yang, Ki-Yull;Kim, Yun-Hi;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1358-1362
    • /
    • 2007
  • The structures, energetics and transfer integrals of the acene tetramers up to pentacene are investigated with the ab initio molecular orbital method at the level of second-order Møller-Plesset perturbation theory (MP2). Calculated geometries for the herringbone-style structures found in the crystal structure were characterized as local minima, however the geometrical discrepancy between crystal and MP2 theoretical structure is reasonably small. The binding energy of pentacene tetramer was calculated up to 40 kcal/mol (MP2/6-31G(d)) and about 90 kcal/mol (MP2/aug-cc-pVDZ), and the latter seems to be too much overestimated. The tendency of the hole transfer integrals computed with ab initio MP2/3-21G(d) geometry is well agreement with those estimated with crystal structure with some discrepancy, and the gradual increment of the transfer integrals at the crystal geometry is attributed to mainly packing structure rather than the intrinsic property of acene such as a size of acene.

Photochemical Reductions of Benzil and Benzoin in the Presence of Triethylamine and TiO? Photocatalyst

  • Park, Joon-Woo;Kim, Eun-Kyung;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1229-1258
    • /
    • 2002
  • This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO2. Without TEA or TiO2, the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO2 increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO2 followed by protonation. In the reaction medium of 88 : 7 : 2 : 3 CH3CN/CH3OH/H2O/TEA with 2.5 $㎎/m{\ell}$ of TiO2, the yield of 2 was as high as 85 % at 50 % conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of $(\pm)$ and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO2-sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of ${\alpha}-cleavage$. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO2 by methanol, to produce 1,2-diphenylpropenone after dehydration reaction.

Light Emitting Characteristics of Multi-layer OLEO Fabricated with DCM (DCM 계열을 이용한 OLED의 전기적인 발광 특성에 관한 연구)

  • Chun, Min-Ho;Yun, Suk-Won;Lim, Sung-Tack;Shin, Dong-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.57-60
    • /
    • 2002
  • In generally, the guest-emitter doped system has been reported to give a bright electroluminescence(EL). The purpose of using doped system is to improve for increasing lifetime and efficiency, and tuning multicolor light. This indicates an enhanced electron-hole recombination rate in emitting layer. The purpose of this study is to obtain the high performance EL devices for flat panel display with red emission. We fabricated EL devices using the guest-host system. where DCM derivatives were taken as a dopant. The devices are fabricated in multilayer system with various concentration of the dopant (red light emitting dye). We measured the I-V characteristics and EL spectra from these devices. and we compared with photoluminescence(PL) quantum yield among the DCM derivatives. The emission mechanism of devices is participated in energy transfer. The energy transfer from these hosts to DCM generates luminescence spectra that vary from yellow red to red, depending on DCM derivatives. Absorption and emission spectra of organic materials composing the devices depend on the emission materials doped with the DCM derivatives. We demonstrated that the high EL efficiency can be achieved by doping host material with DCM derivatives and molecular steric structures

  • PDF

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin;Wu, Dongyao;Liu, Chongyang;Guan, Jingru;Li, Jinze;Huo, Pengwei;Liu, Xinlin;Wang, Qian;Yan, Yongsheng
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.164-174
    • /
    • 2018
  • The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.

Photoreduction of Carbon Dioxide using Graphene Oxide-Titanium Oxide Composite (그래핀 옥사이드와 이산화티타늄 조합을 이용한 이산화탄소의 광환원)

  • Lee, Myung-Kyu;Jang, Jun-Won;Park, Sung-Jik;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.46-51
    • /
    • 2016
  • In this study, we synthesized a combination of graphene oxide (GO) and titanium dioxide (TiO2) and confirm that GO can be used for CO2 photoreduction. TiO2 exhibited highly efficient combination with other conventional electric charges generated by these paration phenomenon for suppression of hole-electron recombination. This improved the efficiency of CO2 photoreduction. The synthetic form of GO-TiO2 used in this study was agraphene sheet surrounded by TiO2 powder. Efficiency and stability were enhanced by combination of GO and TiO2. In a CO2 photoreduction experiment, the highest CO conversion rate was 0.652 μmol/g·h in GO10-TiO2 (2.3-fold that of pure TiO2) and the highest CH4 production rate was 0.037 μmol/g·h in GO0.1-TiO2 (2.4-fold that of pure TiO2). GO enhances photocatalytic efficiency by functioning as a support and absorbent, and enabling charge separation. With increasing GO concentration, the CH4 level decreases to~45% due to decreased transfer of electrons. In this study, TiO2 together with GO yielded a different result than the normal doping effect and selective CO2 photoreduction.