DOI QR코드

DOI QR Code

Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides

  • Lee, Kwang-Yeon (Department of Chemical Engineering, Inha University) ;
  • Kawthekar, Rahul B. (Department of Chemical Engineering, Inha University) ;
  • Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
  • Published : 2007.09.20

Abstract

The new type of heterometallic chiral polymer salen complexes have been synthesized and it has been found that group 13 metal salts (AlCl3, GaCl3 and InCl3) combined to cobalt salen unit played the crucial role in the asymmetric kinetic resolution of racemic epoxides. Polymeric salen catalysts showed very high reactivity and enantioselectivity for the asymmetric ring opening of terminal epoxide with diverse nucleophiles. They provide the enantiopure useful chiral intermediates such as chiral terminal epoxides and α -aryloxy alcohols in one-step process. An efficient methodology for providing very high enantioselectivity can be achieved in the synthesis of valuable chiral building blocks via our catalytic system by combination of various asymmetric ring opening reactions.

Keywords

References

  1. Collman, P. J.; Wang, Z.; Straumanis, A.; Quelquejeu, M.; Rose, E. J. Am. Chem. Soc. 1999, 121, 460 https://doi.org/10.1021/ja9818699
  2. Hanson, M. R. Chem. Rev. 1991, 91, 437 https://doi.org/10.1021/cr00004a001
  3. Tokunaga, M.; Larrow, F. J.; Kakiuchi, F.; Jacobsen, N. E. Science 1997, 277, 936 https://doi.org/10.1126/science.277.5328.936
  4. Nielson, P. C. L.; Stevenson, P. C.; Backmond, G. D.; Jacobsen, N. E. J. Am. Chem. Soc. 2004, 126, 1360 https://doi.org/10.1021/ja038590z
  5. Wright, L. J.; Gregory, F. T.; Heffner, G. T.; Mackenzie, G. R.; Pugsley, A. T.; Meulen, V. S.; Wise, D. L.; Bioorg, M. Chem. Lett. 1997, 7, 1377 https://doi.org/10.1016/S0960-894X(97)00233-3
  6. Takahashi, H.; Sakuraba, S.; Takea, H.; Achiwa, K. J. Am. Chem. Soc. 1990, 112, 5876 https://doi.org/10.1021/ja00171a036
  7. Bose, S. D.; Narsaiah, V. A. Bioorganic & Medicinal Chemistry 2005, 13, 627 https://doi.org/10.1016/j.bmc.2004.10.057
  8. Thakur, S. S.; Li, W.; Kim, S.-J.; Kim, G.-J. Tetrahedron Lett. 2005, 46, 2263 https://doi.org/10.1016/j.tetlet.2005.02.012
  9. Thakur, S. S.; Li, W.; Shin, C.-K.; Kim, G.-J. Chirality 2006, 18, 37 https://doi.org/10.1002/chir.20211
  10. Kwon, M.; Kim, G.-J. Catalysis Today 2003, 87, 145 https://doi.org/10.1016/j.cattod.2003.09.008
  11. Ready, M. J.; Jacobsen, N. E. J. Am. Chem. Soc. 2001, 123, 2687 https://doi.org/10.1021/ja005867b
  12. Ready, M. J.; Jacobsen, N. E. Angew. Chem. 2002, 41, 1374 https://doi.org/10.1002/1521-3773(20020415)41:8<1374::AID-ANIE1374>3.0.CO;2-8
  13. White, E. D.; Jacobsen, N. E. Tetrahedron: Asymmetry 2003, 14, 3633 https://doi.org/10.1016/j.tetasy.2003.09.024
  14. Breinbauer, R.; Jacobsen, N. E. Angew. Chem. 2000, 39, 3604 https://doi.org/10.1002/1521-3773(20001016)39:20<3604::AID-ANIE3604>3.0.CO;2-9
  15. Shin, J.-H.; Kim, G.-J. Tetrahedron Letters 1999, 40, 6827
  16. Peukert, S.; Jacobsen, N. E. Org. Lett. 1999, 1, 1245 https://doi.org/10.1021/ol990920q
  17. Ready, M. J.; Jacobsen, N. E. J. Am. Chem. Soc. 2001, 123, 2687 https://doi.org/10.1021/ja005867b
  18. Ready, M. J.; Jacobsen, N. E. Angew. Chem. 2002, 41, 1374 https://doi.org/10.1002/1521-3773(20020415)41:8<1374::AID-ANIE1374>3.0.CO;2-8
  19. Janssen, B. M. K.; Laquire, L.; Dehaen, W.; Parton, F. R.; Vankelcom, F. J. I.; Jacobs, A. P. Tetrahedron: Asymmetry 1997, 8, 3481 https://doi.org/10.1016/S0957-4166(97)00465-5
  20. Kobayashi, S.; Busujima, T.; Nagayama, S. Chemistry-A European Journal 2000, 6, 3491
  21. Ranu, C. B. Eur. J. Org. Chem. 2000, 13, 2347
  22. Sengupta, S.; Mondal, S. Tetrahedron Lett. 1999, 40, 8685 https://doi.org/10.1016/S0040-4039(99)01843-2
  23. Sakae, U.; Kazuhiro, S.; Masaya, O. Bull. Chem. Soc. Jpn. 2007, 45, 860 https://doi.org/10.1246/bcsj.45.860

Cited by

  1. )-Propranolol vol.78, pp.18, 2013, https://doi.org/10.1021/jo4012656
  2. Asymmetric Hydrolytic and Aminolytic Kinetic Resolution of Racemic Epoxides using Recyclable Macrocyclic Chiral Cobalt(III) Salen Complexes vol.359, pp.22, 2017, https://doi.org/10.1002/adsc.201700788
  3. ChemInform Abstract: Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides. vol.39, pp.8, 2008, https://doi.org/10.1002/chin.200808059
  4. Cooperative multimetallic catalysis using metallosalens vol.46, pp.16, 2010, https://doi.org/10.1039/c001392g
  5. Efficient Asymmetric Sulfoxidation of Prochiral Sulfides Catalyzed by Chiral Salen-Mn(III) Complexes vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1879
  6. Asymmetric Ring Opening of Epoxides Catalyzed by Novel Heterobimetallic Schiff-Bases Containing Transition Metal Salts vol.29, pp.2, 2007, https://doi.org/10.5012/bkcs.2008.29.2.313
  7. Highly active oligomeric Co(salen) catalysts for the asymmetric synthesis of α-aryloxy or α-alkoxy alcohols via kinetic resolution of terminal epoxides vol.329, pp.1, 2010, https://doi.org/10.1016/j.molcata.2010.06.015
  8. Kinetic Evaluation of Cooperative [Co(salen)] Catalysts in the Hydrolytic Kinetic Resolution of rac-Epichlorohydrin vol.2, pp.10, 2007, https://doi.org/10.1002/cctc.201000162
  9. Polymer compositions on kinetic resolution of secondary alcohols using polymer-supported silyl chlorides vol.11, pp.31, 2020, https://doi.org/10.1039/d0py00747a