DOI QR코드

DOI QR Code

Synthesis and Physicochemical Properties of Ionic Liquids: 1-Alkenyl-2,3-dimethylimidazolium Tetrafluoroborates

  • Min, Gwan-Hong (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Yim, Tae-Eun (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Lee, Hyun-Yeong (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Hyo-Jin (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Mun, Jun-Young (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Sang-Mi (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Oh, Seung-M. (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Young-Gyu (Department of Chemical and Biological Engineering, Research Center for Energy Conversion & Storage, Seoul National University)
  • Published : 2007.09.20

Abstract

1-Alkenyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquids having an olefinic substituent were synthesized and characterized. Among them, [AMMIm]BF4 with an allyl group showed lower viscosity, higher ionic conductivity, and a wider electrochemical window compared with its analogue having a saturated alkyl substituent. An EDLC with [AMMIm]BF4 showed better performance than that with [PMMIm]BF4, too.

Keywords

References

  1. Welton, T. Chem. Rev. 1999, 99, 2071-2083 https://doi.org/10.1021/cr980032t
  2. Anthony, J. L.; Brennecke, J. F.; Holbrey, J. D.; Maginn, E. J.; Mantz, R. A.; Rogers, R. D.; Trulove, P. C.; Visser, A. E.; Welton, T. In Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T., Eds.; Wiley-VCH Verlag: Weinheim, 2003; pp 41-126
  3. Song, C. E.; Yoon, M. Y.; Choi, D. S. Bull. Korean Chem. Soc. 2005, 26, 1321-1330 https://doi.org/10.5012/bkcs.2005.26.9.1321
  4. Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345-354 https://doi.org/10.5012/bkcs.2006.27.3.345
  5. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772-3789 https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  6. Dyson, P. J. Transition Met. Chem. 2002, 27, 353-358 https://doi.org/10.1023/A:1015048222698
  7. Bonhote, P.; Dias, A.-P.; Armand, M.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168-1178 https://doi.org/10.1021/ic951325x
  8. Lee, J. S.; Bae, J. Y.; Lee, H.; Quan, N. D.; Kim, H. S.; Kim, H. J. Ind. Eng. Chem. 2004, 10, 1086-1089
  9. Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106-1120 https://doi.org/10.1002/cphc.200301017
  10. Electrochemical Aspects of Ionic Liquids; Ohno, H., ed.; Wiley-Interscience: Hoboken, 2005; pp 173-223
  11. Webber, A.; Blomgren, G. E. In Advances in Lithium-Ion Batteries; van Schalkwijk, W. A., Scrosati, B., Eds.; Kluwer Academic/Plenum Publishers: New York, 2002; pp 185-232
  12. Min, G.-H.; Yim, T.; Lee, H. Y.; Huh, D. H.; Lee, E.; Mun, J.; Oh, S. M.; Kim, Y. G. Bull. Korean Chem. Soc. 2006, 27, 847-852 https://doi.org/10.5012/bkcs.2006.27.6.847
  13. Nakagawa, H.; Izuchi, S.; Kuwana, K.; Nukuda, T.; Aihara, Y. J. Electrochem. Soc. 2003, 150, A695-A700 https://doi.org/10.1149/1.1568939
  14. Gifford, P. R.; Palmisano, J. B. J. Electrochem. Soc. 1987, 134, 610-614 https://doi.org/10.1149/1.2100516
  15. Koch, V. R.; Nanjundiah, C.; Appetecchi, G. B.; Scrosati, B. J. Electrochem. Soc. 1995, 142, L116-L118 https://doi.org/10.1149/1.2044332
  16. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965-967
  17. Sun, J.; MacFarlane, D. R.; Forsyth, M. Electrochim. Acta 2003, 48, 1707-1711 https://doi.org/10.1016/S0013-4686(03)00141-5
  18. Lee, J. S.; Quan, N. D.; Hwang, J. M.; Bae, J. Y.; Kim, H.; Cho, B. W.; Kim, H. S.; Lee, H. Electrochem. Commun. 2006, 8, 460-464 https://doi.org/10.1016/j.elecom.2006.01.009
  19. Ue, M.; Takeda, M.; Toriumi, A.; Kominato, A.; Hagiwara, R.; Itob, Y. J. Electrochem. Soc. 2003, 150, A499-A502 https://doi.org/10.1149/1.1559069
  20. Sato, T.; Masuda, G.; Takagi, K. Electrochim. Acta 2004, 49, 3603-3611 https://doi.org/10.1016/j.electacta.2004.03.030

Cited by

  1. Understanding the Effect of the C2 Proton in Promoting Low Viscosities and High Conductivities in Imidazolium-Based Ionic Liquids: Part I. Weakly Coordinating Anions vol.115, pp.49, 2011, https://doi.org/10.1021/jp208573y
  2. Significance of weak interactions in imidazolium picrate ionic liquids: spectroscopic and theoretical studies for molecular level understanding vol.17, pp.27, 2015, https://doi.org/10.1039/C5CP01944C
  3. The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode vol.18, pp.2, 2015, https://doi.org/10.5229/JKES.2015.18.2.51
  4. Room Temperature Ionic Liquid-based Electrolytes as an Alternative to Carbonate-based Electrolytes vol.55, pp.5, 2015, https://doi.org/10.1002/ijch.201400181
  5. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids vol.117, pp.10, 2017, https://doi.org/10.1021/acs.chemrev.6b00528
  6. Characteristics of protic ionic liquids based on triethanolammonium salts of biologically active carboxylic acids and their impact on the growth properties of the Rhizopus oryzae fungus vol.43, pp.5, 2017, https://doi.org/10.1134/S108765961705008X
  7. Synthesis and Properties of Acyclic Ammonium-based Ionic Liquids with Allyl Substituents as Electrolytes vol.14, pp.5, 2007, https://doi.org/10.3390/molecules14051840
  8. Mechanism of Electrochemical Al Deposition from Room-Temperature Chloroaluminate Ionic Liquids vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.233
  9. Solvent effects of ionic liquids: investigation of ferrocenes as electrochemical probes vol.24, pp.4, 2011, https://doi.org/10.1002/poc.1759
  10. [Omim][BF4] Ionic Liquid, a Green and Recyclable Medium for One-pot Aminomethylation of Electron-rich Aromatic Compounds vol.37, pp.4, 2007, https://doi.org/10.3184/174751913x13635476751996
  11. Phase behavior and ionic conductivity of dendron-coil-dendron block copolymer/ionic liquid electrolytes vol.4, pp.73, 2007, https://doi.org/10.1039/c4ra07483a
  12. Pyrrolinium-based Ionic Liquid as a Flame Retardant for Binary Electrolytes of Lithium Ion Batteries vol.4, pp.2, 2016, https://doi.org/10.1021/acssuschemeng.5b00981
  13. 상온 이온성 액체로 활성화시킨 고온 작동 가능한 Nafion 고분자 전해질 vol.42, pp.4, 2007, https://doi.org/10.7317/pk.2018.42.4.682