DOI QR코드

DOI QR Code

Synthesis and Characterization of Quaternary Ammonium-based Ionic Liquids Containing an Alkyl Carbonate Group

  • Nguyen, Dinh Quan (Department of Chemistry, Kyung Hee University) ;
  • Oh, Ji-Hee (Department of Chemistry, Kyung Hee University) ;
  • Kim, Chang-Soo (Division of Environment and Process Technology, Korea Institute of Science and Technology) ;
  • Kim, Seung-Wook (Division of Environment and Process Technology, Korea Institute of Science and Technology) ;
  • Kim, Hong-Gon (Division of Environment and Process Technology, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Joo (Division of Environment and Process Technology, Korea Institute of Science and Technology) ;
  • Kim, Hoon-Sik (Department of Chemistry, Kyung Hee University)
  • Published : 2007.12.20

Abstract

A series of quaternary ammonium-based ionic liquids (ILs) containing an alkyl carbonate group on the cation was first prepared and their physical and electrochemical properties including density, viscosity, thermal stability, electrochemical stability, and ionic conductivity were reported. These ILs exhibited wide electrochemical windows of at least 5.0 V and relatively high conductivities. In contrast to dialkyl-substituted ionic liquids, the ILs with an alkyl carbonate group on the cation showed much smaller drop in conductivities when mixed with a lithium salt, due to the interaction of lithium ions with carbonate groups. Upon interaction with a Li salt, the carbonyl stretching frequency of the carbonate group shifted to a lower frequency whereas the peak associated with C-O single bond moved to a higher frequency.

Keywords

References

  1. Rogers, R. D.; Seddon, K. R. Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities; ACS: Washington, DC, 2005
  2. Xu, K. Chem. Rev. 2004, 104, 4303 https://doi.org/10.1021/cr030203g
  3. Joraqur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345 https://doi.org/10.5012/bkcs.2006.27.3.345
  4. Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567 https://doi.org/10.1016/j.electacta.2006.03.016
  5. Lee, J. S.; Bae, J. Y.; Lee, H. J.; Nguyen, N. D.; Kim, H. S.; Kim, H. G. J. Ind. Eng. Chem. 2004, 10, 1086
  6. Egashira, M.; Okada, S.; Yamaki, J.; Dri, D. A.; Bonadies, F.; Scrosati, B. J. Power Source 2004, 138, 240 https://doi.org/10.1016/j.jpowsour.2004.06.022
  7. Seki, S.; Ohno, Y.; Kobayashi, Y.; Miyashiro, H.; Usami, A.; Mita, Y.; Tokuda, H.; Watanabe, M.; Hayamizu, K.; Tsuzuki, S.; Hattori, M.; Terada, N. J. Electrochem. Soc. 2007, 154, A173 https://doi.org/10.1149/1.2426871
  8. Koch, V. R.; Nanjundiah, C.; Appetecchi, G. B.; Scrosati, B. J. Electrochem. Soc. 1995, 142, 116 https://doi.org/10.1149/1.2044332
  9. Sun, J.; Forsyth, M.; MacFarlane, D. R. J. Phys. Chem. B 1998, 102, 8858 https://doi.org/10.1021/jp981159p
  10. Matsumoto, M.; Yanagida, M.; Tanimoto, K.; Nomura, M.; Kitagawa, Y.; Miyazaki, Y. Chem. Lett. 2000, 922
  11. MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. J. Phys. Chem. B 1999, 103, 4164 https://doi.org/10.1021/jp984145s
  12. Sakaebe, H.; Matzumoto, H. Electrochem. Commun. 2003, 5, 594 https://doi.org/10.1016/S1388-2481(03)00137-1
  13. Lee, J. S.; Nguyen, D. Q.; Hwang, J. M.; Bae, J. Y.; Kim, H.; Cho, B. W.; Kim, H. S.; Lee, H. Electrochem. Commun. 2006, 8, 460 https://doi.org/10.1016/j.elecom.2006.01.009
  14. Nguyen, D. Q.; Hwang, J.; Lee, J. S.; Kim, H.; Lee, H.; Cheong, M.; Lee, B.; Kim, H. S. Electrochem. Comun. 2007, 9, 109 https://doi.org/10.1016/j.elecom.2006.08.045
  15. Haver, J.; Wojciechowska, M. J. Catal. 1998, 110, 23 https://doi.org/10.1016/0021-9517(88)90294-1
  16. Garcia, B.; Lavallee, S.; Perron, G.; Michot, C.; Armand, M. Electrochim. Acta 2004, 49, 4583 https://doi.org/10.1016/j.electacta.2004.04.041
  17. Lee, S. Y.; Yong, H. H.; Lee, Y. J.; Kim, S. K.; Ahn, S. J. Phys. Chem. B 2005, 109, 13663 https://doi.org/10.1021/jp051974m
  18. Ryu, J. H.; Lee, H.; Kim, Y. J.; Kang, Y. S.; Kim, H. S. Chem. Eur. J. 2001, 7, 1525 https://doi.org/10.1002/1521-3765(20010401)7:7<1525::AID-CHEM1525>3.0.CO;2-U

Cited by

  1. Synthesis and electrochemical behavior of Li2CoSiO4 cathode with pyrrolidinium-based ionic liquid electrolyte for lithium ion batteries vol.20, pp.7, 2014, https://doi.org/10.1007/s11581-013-1057-0
  2. Hybrid Polymer Electrolytes Based on a Poly(vinyl alcohol)/Poly(acrylic acid) Blend and a Pyrrolidinium-Based Ionic Liquid for Lithium-Ion Batteries vol.2015, pp.7, 2014, https://doi.org/10.1002/ejic.201402603
  3. Effect of the Temperature and Coordination Atom on the Physicochemical Properties of Chelate-Based Ionic Liquids and Their Binary Mixtures with Water vol.59, pp.12, 2014, https://doi.org/10.1021/je5004065
  4. Effect of Nitrile-Functionalization of Imidazolium-Based Ionic Liquids on Their Transport Properties, Both Pure and Mixed with Lithium Salts vol.44, pp.3-4, 2015, https://doi.org/10.1007/s10953-014-0280-2
  5. Molecular interactions between ammonium-based ionic liquids and molecular solvents: current progress and challenges vol.18, pp.12, 2016, https://doi.org/10.1039/C6CP00199H
  6. New route to carbonate-functionalized imidazolium and pyrrolidinium-based ionic liquids vol.41, pp.20, 2017, https://doi.org/10.1039/C7NJ01691C
  7. Optimization of pH conditions and characterization of polyelectrolyte complexes between gellan gum and cationic guar gum vol.29, pp.12, 2018, https://doi.org/10.1002/pat.4424
  8. Conductivity of N-(2-methoxyethyl)-substituted morpholinium- and piperidinium-based ionic liquids and their acetonitrile solutions pp.1793-7213, 2018, https://doi.org/10.1142/S179360471840009X
  9. ChemInform Abstract: Synthesis and Characterization of Quaternary Ammonium-Based Ionic Liquids Containing an Alkyl Carbonate Group. vol.39, pp.18, 2008, https://doi.org/10.1002/chin.200818224
  10. Organic Solvents Containing Zwitterion as Electrolyte for Li Ion Cells vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1705
  11. Mechanism of Electrochemical Al Deposition from Room-Temperature Chloroaluminate Ionic Liquids vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.233
  12. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes vol.12, pp.8, 2010, https://doi.org/10.1039/b915989d