DOI QR코드

DOI QR Code

Expressed Protein Ligation of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase: An Application to a Protein Expressed as an Inclusion Body

  • Kim, Hak-Jun (Department of Polar Applied Science, Korea Polar Research Institute) ;
  • Shin, Hee-Jae (Marine Natural Products Laboratory, Korea Ocean Research & Development Institute) ;
  • Kim, Hyun-Woo (Department of Marine Biology, Pukyong National University) ;
  • Kang, Sung-Ho (Department of Polar Applied Science, Korea Polar Research Institute) ;
  • Kim, Young-Tae (Department of Microbiology, Pukyong National University)
  • Published : 2007.12.20

Abstract

Expressed protein ligation (EPL) technique, joining recombinantly expressed proteins to polypeptides, has been widely adopted for addressing various biological questions and for drug discovery. However, joining two recombinant proteins together is sometimes difficult when proteins are expressed insoluble and unrefoldable, because ligation-active proteins via intein-fusion are obtainable when they are folded correctly. We overcame this limitation coexpressing target protein with additional methionine aminopeptidase (MAP) which enhances removal of the initiation methionine of recombinantly expressed protein. Our approach demonstrated that two domains of 46 kDa 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase, a target of herbicide glyphosate, were successfully joined by native chemical ligation, although its C-terminal domain was expressed as an inclusion body. The intein-fused N-terminal fragment of EPSP synthase (EPSPSN, residues 1-237) was expressed and the ligation-active thioester tagged N-terminal fragment (EPSPSN-thioester) was purified using a chitin affinity chromatography and mercapto-ethanesulphonate (MESNA) as intein thiolysis reagent. Its Cterminal fragment (EPSPSC, residues Met237-238CYS-427), expressed as an inclusion body, was prepared from an additional MAP-expressing strain. Protein ligation was initiated by mixing ~1 mM of EPSPSN-thioester with ~2 mM of EPSPSCCYS (residues 238CYS-427). Also we found that addition of 2% thiophenol increased the ligation efficiency via thiol exchange. The ligation efficiency was ~85%. The ligated full-length EPSP synthase was dissolved in 6 M GdHCl and refolded. Circular dichroism (CD) and enzyme activity assay of the purified protein showed that the ligated enzyme has distinct secondary structure and ~115% specific activity compared to those of wild-type EPSP synthase. This work demonstrates rare example of EPL between two recombinantly expressed proteins and also provides hands-on protein engineering protocol for large proteins.

Keywords

References

  1. Muralidharan, V.; Muir, T. W. Nat. Methods 2006, 3, 429 https://doi.org/10.1038/nmeth886
  2. Hofmann, R. M.; Muir, T. W. Curr. Opin. Biotechnol. 2002, 13, 297 https://doi.org/10.1016/S0958-1669(02)00326-9
  3. Muir, T. W. Annu. Rev. Biochem. 2003, 72, 249 https://doi.org/10.1146/annurev.biochem.72.121801.161900
  4. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science 1994, 266, 776
  5. Xu, R.; Ayers, B.; Cowburn, D.; Muir, T. W. Proc. Natl. Acad. Sci. USA 1999, 96, 388 https://doi.org/10.1073/pnas.96.2.388
  6. Lu, W.; Gong, D.; Bar-Sagi, D.; Cole, P. A. Mol. Cell. 2001, 8, 759
  7. Shi, J.; Muir, T. W. J. Am. Chem. Soc. 2005, 127, 6198 https://doi.org/10.1021/ja042287w
  8. Romero, P.; Obradovic, Z.; Li, X.; Garner, E. C.; Brown, C. J.; Dunker, A. K. Proteins 2001, 42, 38 https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
  9. Kishore, G. M.; Shah, D. M. Annu. Rev. Biochem. 1998, 57, 627 https://doi.org/10.1146/annurev.bi.57.070188.003211
  10. Haslam, E. Shikimic Acid: Metabolism and Metabolites; John Wiley: Chichester, 1993
  11. Steinrucken, H. C.; Amrhein, N. Biochem. Biophys. Res. Commun. 1980, 94, 1207 https://doi.org/10.1016/0006-291X(80)90547-1
  12. Franz, J.; Mao, M. K.; Sikorski, J. A. Glyphosate: A Unique Global Herbicide; Oxford University Press: New York, 1997
  13. Schonbrunn, E.; Eschenburg, S.; Shuttleworth, W. A.; Schloss, J. V.; Amrhein, N.; Evans, J. N.; Kabsch, W. Proc. Natl. Acad. Sci. USA 2001, 98, 1376 https://doi.org/10.1073/pnas.98.4.1376
  14. Dessen, A.; Di Guilmi, A. M.; Vernet, T.; Dideberg, O. Curr. Drug Targets Infect. Disord. 2001, 1, 63 https://doi.org/10.2174/1568005013343272
  15. Coggins, J. R.; Abell, C.; Evans, L. B.; Frederickson, M.; Robinson, D. A.; Roszak, A. W.; Lapthorn, A. P. Biochem. Soc. Trans. 2003, 31, 548 https://doi.org/10.1042/BST0310548
  16. Shuttleworth, W. A.; Hough, C. D.; Bertrand, K. P.; Evans, J. N. S. Protein Engineering 1992, 5, 461 https://doi.org/10.1093/protein/5.5.461
  17. Shuttleworth, W. A.; Evans, J. N. S. Biochemistry 1994, 33, 7062 https://doi.org/10.1021/bi00189a007
  18. Evans, T. C., Jr.; Benner, J.; Xu, M. Q. J. Biol. Chem. 1999, 274, 3923 https://doi.org/10.1074/jbc.274.7.3923
  19. Kim, H. J.; Kim, H. W.; Kang, S.-H. J. Microbiol. Biotechnol. 2007, 17, 1385
  20. Evans, T. C., Jr.; Benner, J.; Xu, M. Q. Protein Sci. 1998, 7, 2256 https://doi.org/10.1002/pro.5560071103
  21. Lewendon, A.; Coggins, J. R. Biochem. J. 1983, 213, 187 https://doi.org/10.1042/bj2130187
  22. Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Natl. Acad. Sci. USA 1998, 95, 6705 https://doi.org/10.1073/pnas.95.12.6705
  23. Stallings, W. C.; Abdelmeguid, S. S.; Lim, L. W.; Shieh, H. S.; Dayringer, H. E.; Leimgruber, N. K.; Stegeman, R. A.; Anderson, K. S.; Sikorski, J. A.; Padgette, S. R.; Kishore, G. M. Proc. Natl. Acad. Sci. USA 1991, 88, 5046 https://doi.org/10.1073/pnas.88.11.5046
  24. Chen, L.; Pradhan, S.; Evans, T. C., Jr. Gene 2001, 263, 39 https://doi.org/10.1016/S0378-1119(00)00568-0
  25. Stauffer, M. E.; Young, J. K.; Helms, G. L.; Evans, J. N. J. Biomol. NMR 2001, 20, 387 https://doi.org/10.1023/A:1011250423966
  26. Gonzales, T.; Robert-Baudouy, J. FEMS Microbiol. Rev. 1996, 18, 319
  27. Bradshaw, L. D.; Padgette, S. R.; Kimball, S. L.; Wells, B. H. Weed Technology 1997, 11, 189 https://doi.org/10.1017/S0890037X00041567
  28. Van Valkenburgh, H. A.; Kahn, R. A. Methods Enzymol. 2002, 344, 186 https://doi.org/10.1016/S0076-6879(02)44715-5
  29. Adachi, K.; Yamaguchi, T.; Yang, Y.; Konitzer, P. T.; Pang, J.; Reddy, K. S.; Ivanova, M.; Ferrone, F.; Surrey, S. Protein Expr. Purif. 2000, 20, 37 https://doi.org/10.1006/prep.2000.1277
  30. Sandman, K.; Grayling, R. A.; Reeve, J. N. Biotechnology 1995, 13, 504 https://doi.org/10.1038/nbt0595-504
  31. Muir, T. W.; Dawson, P. E.; Kent, S. B. Methods Enzymol. 1997, 289, 266 https://doi.org/10.1016/S0076-6879(97)89052-0
  32. Camarero, J. A.; Shekhtman, A.; Campbell, E. A.; Chlenov, M.; Gruber, T. M.; Bryant, D. A.; Darst, S. A.; Cowburn, D.; Muir, T. W. Proc. Natl. Acad. Sci. USA 2002, 99, 8536 https://doi.org/10.1073/pnas.132033899
  33. Minard, P.; Hall, L.; Betton, J. M.; Missiakas, D.; Yon, J. M. Protein Eng. 1989, 3, 55 https://doi.org/10.1093/protein/3.1.55
  34. Sherman, M. A.; Chen, Y.; Mas, M. T. Protein Sci. 1997, 6, 882 https://doi.org/10.1002/pro.5560060415
  35. Lathrop, B. K.; Burack, W. R.; Biltonen, R. L.; Rule, G. S. Protein Expr. Purif. 1992, 3, 512 https://doi.org/10.1016/1046-5928(92)90069-9
  36. Camarero, J. A.; Fushman, D.; Cowburn, D.; Muir, T. W. Bioorg. Med. Chem. 2001, 9, 2479 https://doi.org/10.1016/S0968-0896(01)00217-6
  37. Camarero, J. A.; Cotton, G. J.; Adeva, A.; Muir, T. W. J. Pept. Res. 1998, 51, 303 https://doi.org/10.1111/j.1399-3011.1998.tb00428.x
  38. Valiyaveetil, F. I.; MacKinnon, R.; Muir, T. W. J. Am. Chem. Soc. 2002, 124, 9113 https://doi.org/10.1021/ja0266722
  39. Miller, J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky, S. J. Angew. Chem. Int. Ed. Engl. 2003, 42, 431 https://doi.org/10.1002/anie.200390131
  40. Flavell, R. R.; Huse, M.; Goger, M.; Trester-Zedlitz, M.; Kuriyan, J.; Muir, T. W. Org. Lett. 2002, 4, 165

Cited by

  1. In vitro Regulation of Activation with Human Telomerase Reverse Transcriptase Components Expressed in Escherichia coli and Human Telomerase RNA Component vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1633
  2. Chemoenzymatic Semisynthesis of Proteins vol.120, pp.6, 2007, https://doi.org/10.1021/acs.chemrev.9b00450