DOI QR코드

DOI QR Code

Receptor-oriented Pharmacophore-based in silico Screening of Human Catechol O-Methyltransferase for the Design of Antiparkinsonian Drug

  • Lee, Jee-Young (Department of Bioscience and Biotechnology, Bio/informatics Center, IBST, Konkuk University) ;
  • Baek, Sun-Hee (Department of Bioscience and Biotechnology, Bio/informatics Center, IBST, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/informatics Center, IBST, Konkuk University)
  • Published : 2007.03.20

Abstract

Receptor-oriented pharmacophore-based in silico screening is a powerful tool for rapidly screening large number of compounds for interactions with a given protein. Inhibition of the enzyme catechol-Omethyltransferase (COMT) offers a novel possibility for treating Parkinson's disease. Bisubstrate inhibitors of COMT containing the adenine of S-adenosylmethionine (SAM) and a catechol moiety are a new class of potent and selective inhibitor. In the present study, we used receptor-oriented pharmacophore-based in silico screening to examine the interactions between the active site of human COMT and bisubstrate inhibitors. We generated 20 pharmacophore maps, of which 4 maps reproduced the docking model of hCOMT and a bisubstrate inhibitor. Only one of these four, pharmacophore map I, effectively described the common features of a series of bisubstrate inhibitors. Pharmacophore map I consisted of one hydrogen bond acceptor (to Mg2+), three hydrogen bond donors (to Glu199, Glu90, and Gln120), and one hydrophobic feature (an active site region surrounded by several aromatic and hydrophobic residues). This map represented the most essential pharmacophore for explaining interactions between hCOMT and a bisubstrate inhibitor. These results revealed a pharmacophore that should help in the development of new drugs for treating Parkinson's disease.

Keywords

References

  1. Mannisto, P. T.; Kaakkola, S. Pharmacol. Rev. 1999, 51, 593
  2. Zhu, B. T. Curr. Drug. Metabol. 2002, 3, 321 https://doi.org/10.2174/1389200023337586
  3. Matsumoto, M.; Shannon, W.; Akil, B.; Lipska, K.; Hyde, T. M.; Herman, M. M.; Kleinman, J. E.; Weinberger, D. R. Neuroscience 2003, 116, 127 https://doi.org/10.1016/S0306-4522(02)00556-0
  4. Pekka, T. M.; Seppo, K. Biochemistry 1999, 51, 593
  5. Vincenzo, B.; Giuseppe, M. Pharmacol. Ther. 1999, 81, 1 https://doi.org/10.1016/S0163-7258(98)00032-1
  6. Chun-Hwi, T.; Ruey-Meei, W. Acta Med. Okayama. 2002, 56, 1
  7. Bao, T. Z. Curr. Drug. Metab. 2002, 3, 321 https://doi.org/10.2174/1389200023337586
  8. Seppo, K. Drugs 2000, 59, 1233 https://doi.org/10.2165/00003495-200059060-00004
  9. Dingemanse, J. Drug Develop. Res. 1997, 42, 1 https://doi.org/10.1002/(SICI)1098-2299(199709)42:1<1::AID-DDR1>3.0.CO;2-I
  10. Jadwiga, N. Clinical Therapeutics 2001, 23, 802 https://doi.org/10.1016/S0149-2918(01)80071-0
  11. Daniel, O.; Hanna, P.; Ronit, G. M.; Eldad, M. Clinical Neuropharmacology 2001, 24, 27 https://doi.org/10.1097/00002826-200101000-00006
  12. Guldberg, H. C.; Marsden, C. A. Pharmacol. Rev. 1975, 27, 135
  13. Reenila, I.; Mannisto, P. T. Medical Hypothesis 2001, 57, 628 https://doi.org/10.1054/mehy.2001.1430
  14. Rivett, A. J.; Francis, A.; Roth, J. A. J. Neurochem. 1983, 40, 215 https://doi.org/10.1111/j.1471-4159.1983.tb12673.x
  15. Maria, J. B.; Margarida, A.; Maria, L. R.; Pedro, M. M.; David, A. L.; Maria, A. C.; Patricio, S. S. Mol. Pharmacol. 2002, 62, 795 https://doi.org/10.1124/mol.62.4.795
  16. Lee, J. Y.; Kim, Y. Bull. Korean Chem. Soc. 2005, 26, 1695 https://doi.org/10.5012/bkcs.2005.26.11.1695
  17. Sanchez, R.; Sali, A. J. of Mol. Struct. 1997, 398-399, 489
  18. Kopp, J.; Schwede, T. Pharmacogenomics 2004, 5, 405 https://doi.org/10.1517/14622416.5.4.405
  19. Christian, L.; Birgit, M.; Armin, R.; Volker, G.; Roland, J. R.; Gerhard, Z.; Edilio, B.; Francois, D. Org. Biol. Chem. 2003, 1, 42 https://doi.org/10.1039/b208690p
  20. Ralph, P.; Christian, L.; Roland, J. R.; Gerhard, Z.; Edilio, B.; FranAois, D. ChemBioChem 2004, 5, 1270 https://doi.org/10.1002/cbic.200400084
  21. Christian, L.; Birgit, M.; Armin, R.; Volker, G.; Roland, J. R.; Gerhard, Z.; Edilio, B.; François, D. Angew. Chem. Int. Ed. 2001, 40, 4040 https://doi.org/10.1002/1521-3773(20011105)40:21<4040::AID-ANIE4040>3.0.CO;2-C
  22. Paul, D. K.; Rob, B.; Scott, K.; Marvin, W.; Venkatachalam, C. M. J. of Comp. Chem. 2001, 22, 993 https://doi.org/10.1002/jcc.1060
  23. Hoffren, A. M.; Murray, C. M.; Hoffmann, R. D. Curr. Pharm. Des. 2001, 7, 547 https://doi.org/10.2174/1381612013397870
  24. Luke, S. F.; Osman, F. G. J. Braz. Chem. Soc. 2002, 13, 777 https://doi.org/10.1590/S0103-50532002000600008
  25. Pickett, S. D.; Mason, J. S.; McLay, I. M. J. Chem. Inf. Comput. Sci. 1996, 36, 1214 https://doi.org/10.1021/ci960039g
  26. Menana, E.; Michel, L.; Slain, C.; Fouad, C. O. J. Mol. Model. 2001, 8, 65 https://doi.org/10.1007/s00894-001-0067-4
  27. Cosenitino, U.; Vari, M. R.; Saracino, A. A.; Pitea, D.; Moro, G.; Salmona, M. J. Mol. Model. 2005, 11, 17 https://doi.org/10.1007/s00894-004-0213-x
  28. Marty-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291
  29. Sali, A.; Blundell, T. L. J. Mol. Biol. 1993, 234, 779 https://doi.org/10.1006/jmbi.1993.1626
  30. Fiser, A.; Do, R. K.; Šali, A. Protein Science 2000, 9, 1753 https://doi.org/10.1110/ps.9.9.1753
  31. Sali, A. Mol. Med. Today 1995, 1, 270 https://doi.org/10.1016/S1357-4310(95)91170-7
  32. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Prot. Eng. 1995, 8, 127 https://doi.org/10.1093/protein/8.2.127
  33. Patricio, S. S.; Maria, A.; Vieira, C.; Antonio, P. Pharmacology & Toxicology 2003, 92, 272 https://doi.org/10.1034/j.1600-0773.2003.920604.x
  34. Krammer, A.; Kirchhoff, P. D.; Jiang, X.; Venkatachalam, C. M.; Waldman, M. J. Mol. Graph. Model. 2005, 23, 395 https://doi.org/10.1016/j.jmgm.2004.11.007
  35. Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M. J. Mol. Graph. Model. 2003, 21, 289 https://doi.org/10.1016/S1093-3263(02)00164-X

Cited by

  1. Small Molecule Structure Correctors Abolish Detrimental Effects of Apolipoprotein E4 in Cultured Neurons vol.287, pp.8, 2011, https://doi.org/10.1074/jbc.M111.276162
  2. Epigallocatechin 3-gallate Binds to Human Salivary α-Amylase with Complex Hydrogen Bonding Interactions vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2222
  3. 3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.941
  4. Cell Selectivity of Arenicin-1 and Its Derivative with Two Disulfide Bonds vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1190
  5. Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1479
  6. Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1717
  7. Docking Study of Flavonols and Human c-Jun N-terminal Kinase 1 vol.31, pp.8, 2007, https://doi.org/10.5012/bkcs.2010.31.8.2147
  8. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics vol.15, pp.1, 2007, https://doi.org/10.1080/17460441.2020.1691165