DOI QR코드

DOI QR Code

MP2 Basis Set Limit Binding Energy Estimates of Hydrogen-bonded Complexes from Extrapolation-oriented Basis Sets

  • Park, Young-Choon (Division of Natural Sciences, College of Natural Sciences, Ajou University) ;
  • Lee, Jae-Shin (Division of Natural Sciences, College of Natural Sciences, Ajou University)
  • Published : 2007.03.20

Abstract

By use of a simple two-point extrapolation scheme estimating the correlation energies of the molecules along with the basis sets specifically targeted for extrapolation, we have shown that the MP2 basis set limit binding energies of large hydrogen-bonded complexes can be accurately predicted with relatively small amount of computational cost. The basis sets employed for computation and extrapolation consist of the smallest correlation consistent basis set cc-pVDZ and another basis set made of the cc-pVDZ set plus highest angular momentum polarization functions from the cc-pVTZ set, both of which were then augmented by diffuse functions centered on the heavy atoms except hydrogen in the complex. The correlation energy extrapolation formula takes the (X+1)-3 form with X corresponding to 2.0 for the cc-pVDZ set and 2.3 for the other basis set. The estimated MP2 basis set limit binding energies for water hexamer, hydrogen fluoride pentamer, alaninewater, phenol-water, and guanine-cytosine base pair complexes of nucleic acid by this method are 45.2(45.9), 36.1(37.5), 10.9(10.7), 7.1(6.9), and 27.6(27.7) kcal/mol, respectively, with the values in parentheses representing the reference basis set limit values. A comparison with the DFT results by B3LYP method clearly manifests the effectiveness and accuracy of this method in the study of large hydrogen-bonded complexes.

Keywords

References

  1. Laasonen, K.; Csajka, F.; Parrinello, M. Chem. Phys. Lett. 1992, 194, 172 https://doi.org/10.1016/0009-2614(92)85529-J
  2. Sim, F.; St.-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391
  3. Laasonen, K.; Sprik, M.; Parrinello, M.; Car, R. J. Chem. Phys. 1993, 99, 9080 https://doi.org/10.1063/1.465574
  4. Laasonen, K.; Parrinello, M.; Car, R.; Lee, C.; Vanderbilt, D. Chem. Phys. Lett. 1993, 207, 208 https://doi.org/10.1016/0009-2614(93)87016-V
  5. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502 https://doi.org/10.1021/jp960976r
  6. Becke, A. D. J. Chem. Phys. 1992, 97, 9173 https://doi.org/10.1063/1.463343
  7. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  8. Tsuzuki, S.; Luthi, H. P. J. Chem. Phys. 2001, 114, 3949 https://doi.org/10.1063/1.1344891
  9. Boese, A. D.; Chandra, A.; Martin, J. M. L.; Marx, D. J. Chem. Phys. 2003, 119, 5965 https://doi.org/10.1063/1.1599338
  10. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 6624 https://doi.org/10.1021/jp052571p
  11. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618 https://doi.org/10.1103/PhysRev.46.618
  12. Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 155, 503
  13. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281
  14. Shavitt, I. In Molecular Interactions; Scheiner, S., Ed.; John Wiley: Chichester, 1997
  15. Wilson, A.; Dunning, Jr., T. H. J. Chem. Phys. 1997, 106, 8718 https://doi.org/10.1063/1.473932
  16. Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106, 9639 https://doi.org/10.1063/1.473863
  17. Hwang, R.; Park, Y. C.; Lee, J. S. Theo. Chem. Acc. 2006, 115, 54 https://doi.org/10.1007/s00214-005-0675-7
  18. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  19. Stephens, J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. Phys. Chem. 1994, 98, 11623 https://doi.org/10.1021/j100096a001
  20. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553 https://doi.org/10.1080/00268977000101561
  21. Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45 https://doi.org/10.1016/S0009-2614(98)00866-5
  22. Gdanitz, R. J. J. Chem. Phys. 2000, 113, 5145 https://doi.org/10.1063/1.1290001
  23. Varandas, A. J. C. J. Chem. Phys. 2000, 113, 8880 https://doi.org/10.1063/1.1319644
  24. Park, S. Y.; Lee, J. S. J. Chem. Phys. 2002, 116, 5389 https://doi.org/10.1063/1.1457430
  25. Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 118, 3035 https://doi.org/10.1063/1.1534091
  26. Lee, J. S. Theo. Chem. Acc. 2005, 113, 87 https://doi.org/10.1007/s00214-004-0616-x
  27. Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007 https://doi.org/10.1063/1.456153
  28. Woon, D. E.; Dunnng Jr., T. H. J. Chem. Phys. 1993, 98, 1358 https://doi.org/10.1063/1.464303
  29. Woon, D. E.; Dunnng Jr., T. H. J. Chem. Phys. 1994, 100, 2975 https://doi.org/10.1063/1.466439
  30. Peterson, K. A.; Woon, D. E.; Dunnng Jr., T. H. J. Chem. Phys. 1994, 100, 7410 https://doi.org/10.1063/1.466884
  31. Wilson, A.; Mourik, T.; Dunning Jr., T. H. J. Mol. Struct. (THEOCHEM) 1997, 388, 339
  32. Wilson, A.; Woon, D. E.; Peterson, K. A.; Dunnng Jr., T. H. J. Chem. Phys. 1999, 110, 7667 https://doi.org/10.1063/1.478678
  33. Xantheas, S. S.; Burnham, C. J.; Harrison, R. J. J. Chem. Phys. 2002, 116, 1493 https://doi.org/10.1063/1.1423941
  34. Klopper, W.; Quack, M.; Suhm, M. A. Mol. Phys. 1998, 94, 105
  35. Richardson, N. A.; Wesolowski, S. S.; Schaefer, H. F. J. Am. Chem. Soc. 2002, 124, 10163 https://doi.org/10.1021/ja020009w
  36. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M. Gaussian 98; Gaussian Inc.: Pittsburgh, PA, 1998
  37. Feller, D. J. Chem. Phys. 1992, 96, 6104 https://doi.org/10.1063/1.462652
  38. Jurecka, P.; Hobza, P. J. Am. Chem. Soc. 2003, 125, 15608 https://doi.org/10.1021/ja036611j

Cited by

  1. A comparative study of the dimers of selected hydroxybenzenes vol.112, pp.2, 2011, https://doi.org/10.1002/qua.23025
  2. Two-step evaluation of binding energy and potential energy surface of van der Waals complexes vol.33, pp.6, 2012, https://doi.org/10.1002/jcc.21993
  3. The (H-δ···H+δ) charge transfer and the evaluation of the harmonic molecular properties of dihydrogen-bonded complexes formed by BeH2···HX with X = F, Cl, CN, and CCH vol.19, pp.2, 2008, https://doi.org/10.1007/s11224-007-9269-4
  4. A chemometrical study of intermolecular properties of hydrogen-bonded complexes formed by C2H4O⋅⋅⋅HX and C2H5N⋅⋅⋅HX with X = F, CN, NC, and CCH vol.15, pp.4, 2009, https://doi.org/10.1007/s00894-008-0422-9
  5. A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution vol.110, pp.3, 2010, https://doi.org/10.1002/qua.22262
  6. Density Functional Theory Study of Acetonitrile -Water Clusters: Structures and Infrared Frequency Shifts vol.28, pp.5, 2007, https://doi.org/10.5012/bkcs.2007.28.5.725
  7. Tautomerism of Cytosine on Silver, Gold, and Copper: Raman Spectroscopy and Density Functional Theory Calculation Study vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.069
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. A theoretical investigation of intermolecular interaction of a phthalimide based “on-off” sensor with different halide ions: tuning its efficiency and electro-optical properties vol.122, pp.1, 2007, https://doi.org/10.1007/s00214-008-0486-8
  10. A study of the intramolecular hydrogen bond in acylphloroglucinols vol.901, pp.1, 2009, https://doi.org/10.1016/j.theochem.2009.01.032
  11. Interplay of intramolecular hydrogen bonds, OH orientations, and symmetry factors in the stabilization of polyhydroxybenzenes vol.111, pp.14, 2007, https://doi.org/10.1002/qua.22845
  12. Determination of binding energy in molecular clusters by ion imaging methods: A test on the phenol-water 1:1 cluster vol.1090, pp.None, 2007, https://doi.org/10.1016/j.molstruc.2015.01.002
  13. Intramolecular hydrogen bonding patterns, conformational preferences and molecular properties of dimeric acylphloroglucinols: An ab initio and DFT study vol.1176, pp.None, 2019, https://doi.org/10.1016/j.molstruc.2018.07.013
  14. Computational study of acylphloroglucinols: an investigation with many branches vol.91, pp.4, 2007, https://doi.org/10.1515/pac-2018-0909