DOI QR코드

DOI QR Code

Electric Field-induced Charge Transfer of (Bu4N)2[Ru(dcbpyH)2-(NCS)2] on Gold, Silver, and Copper Electrode Surfaces Investigated by Means of Surface-enhanced Raman Scattering

  • Published : 2007.08.20

Abstract

The potential-induced charge transfer of the dye (Bu4N)2[Ru(dcbpyH)2-(NCS)2] (N719) on Au, Ag, and Cu electrode surfaces has been examined by surface-enhanced Raman scattering (SERS) in the applied voltage range between 0.0 and ?0.8 V. N719 is assumed to have a relatively perpendicular geometry with its bipyridine ring on the metal surfaces. A strong appearance of the carboxylate band at ~1370 cm-1 indicates that the carboxyl group will likely be deprotonated on the metal surfaces. As the electric potential is shifted from ?0.8 to 0.0 V, the ν (NCS) band at ~2100 cm-1 on the electrode surfaces appears to undergo a shift in frequency and intensity change. This indicated that the charge transfer between the dye and metal electrode surfaces had occurred. Electric-field-dependent charge transfer differs somewhat depending on the type of metal surfaces as suggested from the dissimilar frequency positions of the ν (NCS) band.

Keywords

References

  1. Gratzel, M. Nature 2001, 414, 338 https://doi.org/10.1038/35104607
  2. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269 https://doi.org/10.1021/ar980112j
  3. Anderson, N. A.; Lian, T. Annu. Rev. Phys. Chem. 2005, 56, 491 https://doi.org/10.1146/annurev.physchem.55.091602.094347
  4. Perez Leon, C.; Kador, L.; Peng, B.; Thelakkat, M. J. Phys. Chem. B 2006, 110, 8723 https://doi.org/10.1021/jp0561827
  5. Park, H.; Bae, E.; Lee, J.-J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740 https://doi.org/10.1021/jp060397e
  6. Yates, J. T.; Madey, T. E. Vibrational Spectroscopy of Molecules on Surfaces Plenum Press: Plenum, New York, 1987
  7. Schatz, G. C.; Van Duyne, R. P. In Handbook of Vibrational Spectroscopy Chalmers, J. M., Griffiths, P. R., Eds.; John Wiley & Sons: New York, 2002; Vol. 1, pp 759-774
  8. Kwon, C. K.; Kim, K.; Kim, M. S.; Lee, S.-B. Bull. Kor. Chem. Soc. 1989, 10, 254
  9. Jang, S.; Kim, S. I.; Shin, S.; Joo, S.-W. Surf. Interf. Anal. 2004, 36, 43 https://doi.org/10.1002/sia.1647
  10. Joo, S.-W. Vib. Spectrosc. 2004, 34, 269 https://doi.org/10.1016/j.vibspec.2003.12.006
  11. Kim, S.; Ihm, K.; Kang, T.-H.; Hwang, S.; Joo, S.-W. Surf. Interf. Anal. 2005, 37, 294 https://doi.org/10.1002/sia.2019
  12. Cho, K.-H.; Choo, J.; Joo, S.-W. Spectrochim. Acta A 2005, 61, 1141 https://doi.org/10.1016/j.saa.2004.06.032
  13. Yoo, B. K.; Joo, S.-W. J. Col. Interf. Sci. 2007, 311, 491 https://doi.org/10.1016/j.jcis.2007.02.036
  14. Lim, J. K.; Joo, S.-W. J. Electroanal. Chem. 2007, 605, 68 https://doi.org/10.1016/j.jelechem.2007.03.001
  15. Lehn, J. M. Supramolecular Chemistry Wiley-VCH: Weinheim, 1995
  16. Ulman, A. Acc. Chem. Res. 2001, 34, 855 https://doi.org/10.1021/ar0001564
  17. Ren, B.; Lin, X.-F.; Yang, Z.-L.; Lin, G.-K.; Aroka, R. F.; Mao, B.-W.; Tian, Z.-Q. J. Am. Chem. Soc. 2003, 125, 9598 https://doi.org/10.1021/ja035541d
  18. Doering, W. E.; Nie, S. Anal. Chem. 2003, 75, 6171 https://doi.org/10.1021/ac034672u
  19. Joo, S.-W. Surf. Interf. Anal. 2006, 38, 173 https://doi.org/10.1002/sia.2239
  20. Bae, S. J.; Lee, C.-R.; Choi, I. S.; Hwang, C.-S.; Gong, M.-S.; Kim, K.; Joo, S.-W. J. Phys. Chem. B 2002, 106, 7076
  21. Joo, S.-W.; Chung, T. D.; Jang, W.; Gong, M.-S.; Geum, N. H.; Kim, K. Langmuir 2002, 18, 8813
  22. Lee, C.-R.; Bae, S. J.; Gong, M.-S.; Kim, K.; Joo, S.-W. J. Raman Spectrosc. 2002, 33, 429
  23. Joo, S.-W.; Kim, Y. S. Col. Surf. A 2004, 234, 117 https://doi.org/10.1016/j.colsurfa.2003.12.011
  24. Cho, K.-H.; Choo, J.; Joo, S.-W. J. Mol. Struct. 2005, 738, 9 https://doi.org/10.1016/j.molstruc.2004.11.001
  25. Kim, S.; Joo, S.-W. Vib. Spectrosc. 2005, 39, 74 https://doi.org/10.1016/j.vibspec.2004.11.003
  26. Lim, J. K.; Kim, I.-H.; Kim, K.-H.; Shin, K. S.; Kang, W.; Choo, J.; Joo, S.-W. Chem. Phys. 2006, 330, 245 https://doi.org/10.1016/j.chemphys.2006.08.020
  27. Joo, S.-W. J. Raman Spectrosc. 2006, 37, 1244 https://doi.org/10.1002/jrs.1542
  28. Cometto, F. P.; Parendes-Olivera, P.; Macagno, V. A.; Patrito, E. M. J. Phys. Chem. B 2005, 109, 21737 https://doi.org/10.1021/jp053273v
  29. Perez Leon, C.; Kador, L.; Peng, B.; Thelakkat, M. J. Phys. Chem. B 2005, 109, 5783 https://doi.org/10.1021/jp044946x
  30. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783 https://doi.org/10.1103/RevModPhys.57.783
  31. Zhang, Z.; Zakeeruddin, S. M.; O'egan, B. C.; Humphry-Baker, R.; Gratzel, M. J. Phys. Chem. B 2005, 109, 21818 https://doi.org/10.1021/jp054305h

Cited by

  1. New insights on surface-enhanced Raman scattering based on controlled aggregation and spectroscopic studies, DFT calculations and symmetry analysis for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine adsorbed onto citrate-stabilized gold nanoparticles vol.42, pp.4, 2011, https://doi.org/10.1002/jrs.2741
  2. Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene vol.5, pp.7, 2011, https://doi.org/10.1021/nn103237x
  3. Influence of Electric Field on SERS: Frequency Effects, Intensity Changes, and Susceptible Bonds vol.134, pp.10, 2012, https://doi.org/10.1021/ja208893q
  4. nanofibre as a solar light harvesting layer vol.31, pp.4, 2012, https://doi.org/10.1080/1478646X.2011.583988
  5. Surface vol.117, pp.5, 2013, https://doi.org/10.1021/jp3113182
  6. Nanoparticles and Potential Correlation Strategies vol.14, pp.10, 2013, https://doi.org/10.1002/cphc.201300381
  7. –N719 Interface vol.119, pp.32, 2015, https://doi.org/10.1021/acs.jpcc.5b05318
  8. Interface by Surface-Enhanced Raman Spectroscopy vol.120, pp.24, 2016, https://doi.org/10.1021/acs.jpcc.6b03228
  9. Surfaces vol.5, pp.4, 2010, https://doi.org/10.1002/asia.200900414
  10. Tautomerism of Cytosine on Silver, Gold, and Copper: Raman Spectroscopy and Density Functional Theory Calculation Study vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.069
  11. Surface-Enhanced Raman Scattering of Benzenethiol Adsorbed on Silver-Exchanged Copper Powders vol.29, pp.2, 2007, https://doi.org/10.5012/bkcs.2008.29.2.445
  12. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  13. pH-Dependent Surface-enhanced Raman Scattering Analysis of Maleimide and Succinimide on Ag Nanocolloidal Surfaces vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1761
  14. Infrared Spectroscopic Study of α-Cyano-4-hydroxycinnamic Acid on Nanocrystalline TiO2 Surfaces: Anchoring of Metal-Free Organic Dyes at Photoanodes in Dye-Sensitized Solar Cells vol.31, pp.1, 2007, https://doi.org/10.5012/bkcs.2010.31.01.116
  15. Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency vol.405, pp.11, 2010, https://doi.org/10.1016/j.physb.2010.03.041
  16. Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells vol.42, pp.15, 2013, https://doi.org/10.1039/c3dt32741h
  17. Reduced Charge-Transfer Threshold in Dye-Sensitized Solar Cells with an Au@Ag/N3/n-TiO2 Structure As Revealed by Surface-Enhanced Raman Scattering vol.122, pp.24, 2007, https://doi.org/10.1021/acs.jpcc.8b02197