References
- Miller, K.; Gore, R.; Johnson, R. J. Bacteriol. 1990, 172, 136
- Tully, R.; Kiester, D.; Gross, K. Appl. Environ. Microbiol. 1990, 56, 1518
- Pfeffer, P.; Becard, G.; Rolin, D. Appl. Environ. Microbiol. 1994, 60, 2137
- Arvind, B.; Mithofer, A.; Pfeffer, P. Plant Physiol. 1999, 119, 1057 https://doi.org/10.1104/pp.119.3.1057
- Miller, K.; Hadley, J.; Gustine, D. Plant Physiol. 1994, 104, 917
- Katiyar, S. K.; Elmets, C. A. Int. J. Oncol. 2001, 18, 1307
- Jung, Y. D.; Ellis, L. M. Int. J. Exp. Pathol. 2001, 82, 309 https://doi.org/10.1046/j.1365-2613.2001.00205.x
- Kazi, A.; Smith, D. M.; Daniel, K.; Zhong, S.; Gupta, P.; Bosley, M.; Dou, Q. P. In Vivo 2002, 16, 397
- Gupta, S.; Saha, B.; Giri, A. K. Mutat. Res. 2002, 512, 37 https://doi.org/10.1016/S1383-5742(02)00024-8
- Yang, C. S.; Maliakal, P.; Meng, X. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 25 https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
- Lambert, J. D.; Yang, C. S. Mutat. Res. 2003, 523, 201
- Nyfeler, F.; Moser, U. K.; Walter, P. Biochim. Biophys. Acta 1983, 763, 50 https://doi.org/10.1016/0167-4889(83)90024-1
- Bais, H. P.; Walker, T. S.; Stermitz, F. R.; Hufbauer, R. A.; Vivanco, J. M. Plant Physiol. 2002, 128, 1173 https://doi.org/10.1104/pp.011019
- Dalluge, J. J.; Nelson, B. C.; Thomas, J. B.; Sander, L. C. J. Chromatogr. A 1998, 793, 265 https://doi.org/10.1016/S0021-9673(97)00906-0
- Bronner, W. E.; Beecher, G. R. J. Chromatogr. A 1998, 805, 137 https://doi.org/10.1016/S0021-9673(98)00040-5
- Fernandez, P. L.; Martin, M. J.; Gonzalez, A. G.; Pablos, F. Analyst 2000, 125, 421 https://doi.org/10.1039/a909219f
- Arts, I. C.; van de Putte, B.; Hollman, P. C. J. Agric. Food Chem. 2000, 48, 1746 https://doi.org/10.1021/jf000025h
- Subagio, A.; Sari, P.; Morita, N. Phytochem. Anal. 2001, 12, 271 https://doi.org/10.1002/pca.583
- Lin, Y. S.; Tsai, Y. J.; Tsay, J. S.; Lin, J. K. J. Agric. Food Chem. 2003, 51, 1864 https://doi.org/10.1021/jf021066b
- Cheong, W. J.; Park, M. H.; Kang, G. W.; Ko, J. H.; Seo, Y. J. Bull. Korean Chem. Soc. 2005, 26, 747 https://doi.org/10.5012/bkcs.2005.26.5.747
- Larger, P. J.; Jones, A. D.; Dacombe, C. J. Chromatogr. A 1998, 799, 309 https://doi.org/10.1016/S0021-9673(97)01062-5
- Horie, H.; Kohata, K. J. Chromatogr. A 1998, 802, 219 https://doi.org/10.1016/S0021-9673(97)01069-8
- Arce, L.; Rios, A.; Valcarcel, M. J. Chromatogr. A 1998, 827, 113 https://doi.org/10.1016/S0021-9673(98)00737-7
- Worth, C. C. T.; WieBler, M.; Schmitz, O. J. Electrophoresis 2000, 21, 3634 https://doi.org/10.1002/1522-2683(200011)21:17<3634::AID-ELPS3634>3.0.CO;2-O
- Pomponio, R.; Gotti, R.; Luppi, B.; Cavrini, V. Electrophoresis 2003, 24, 1658 https://doi.org/10.1002/elps.200305391
- Bonoli, M.; Colabufalo, P.; Pelillo, M.; Toschi, T. G.; Lercker, G. J. Agric. Food Chem. 2003, 51, 1141 https://doi.org/10.1021/jf020907b
- Shuji, K.; Atsushi, Y.; Akinobu, M.; Hiroko, Y. Electrophoresis 2004, 25, 2892 https://doi.org/10.1002/elps.200305902
- Whittal, R. M.; Schriemer, D. C.; Li, L. Anal. Chem. 1997, 69, 2734 https://doi.org/10.1021/ac970002a
- Lee, S.; Seo, D.; Jung, S. Carbohydr. Res. 2001, 334, 119 https://doi.org/10.1016/S0008-6215(01)00178-1
- Glasoe, P. K.; Long, F. A. J. Phys. Chem. 1960, 64, 188 https://doi.org/10.1021/j100830a521
- Lee, S. H.; Yi, D. H.; Jung, S. H. Bull. Korean Chem. Soc. 2004, 25, 216 https://doi.org/10.5012/bkcs.2004.25.2.216
- Rolin, D. B.; Pfeffer, P. E.; Osman, S. F.; Szwergold, B. S.; Kappler, F.; Benesi, A. J. Biochim. Biophys. Acta 1992, 1116, 215 https://doi.org/10.1016/0304-4165(92)90014-L
- Park, H.; Jung, S. Electrophoresis 2005, 26, 3833 https://doi.org/10.1002/elps.200500194
- Lee, S.; Jung, S. Carbohydr. Res. 2003, 338, 1143 https://doi.org/10.1016/S0008-6215(03)00083-1
- Lee, S.; Jung, S. Carbohydr. Res. 2002, 337, 1785 https://doi.org/10.1016/S0008-6215(02)00286-0
Cited by
- Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2007-2008 vol.31, pp.2, 2012, https://doi.org/10.1002/mas.20333
- Properties and current applications of bacterial cyclic β-glucans and their derivatives vol.85, pp.3-4, 2016, https://doi.org/10.1007/s10847-016-0630-3
- Review: Separation and Pharmacology of Chiral Compounds in Traditional Chinese Medicine vol.50, pp.1, 2017, https://doi.org/10.1080/00032719.2016.1169540
- based on ‘chelation enhanced fluorescence’ (CHEF) effect vol.33, pp.7, 2018, https://doi.org/10.1002/bio.3536
- Advances in enantioselective separations using electromigration capillary techniques vol.30, pp.1, 2009, https://doi.org/10.1002/elps.200800607
- Chiral separation of catechin by capillary electrophoresis using mono-, di-, tri-succinyl-β-cyclodextrin as chiral selectors vol.21, pp.10, 2009, https://doi.org/10.1002/chir.20696
- Analysis of Broad-Range DNA Fragments with Yttrium Oxide or Ytterbium Oxide Nanoparticle/Polymer Sieving Matrix Using High-Performance Capillary Electrophoresis vol.30, pp.2, 2009, https://doi.org/10.5012/bkcs.2009.30.2.297
- Molecular Modeling Studies on the Chiral Separation of (±)-Catechins by Mono-succinyl-β-cyclodextrin vol.30, pp.6, 2007, https://doi.org/10.5012/bkcs.2009.30.6.1373
- Periplasmic glucans isolated from Proteobacteria vol.42, pp.12, 2007, https://doi.org/10.5483/bmbrep.2009.42.12.769
- Effect of Nanoparticles in Protein Separation by Capillary Electrophoresis vol.31, pp.2, 2007, https://doi.org/10.5012/bkcs.2010.31.02.479
- Chiral Separation of Catechin by Capillary Electrophoresis with α-Cyclosophorooctadecaose Isolated from Rhodobacter sphaeroides as Chiral Selectors vol.32, pp.4, 2007, https://doi.org/10.5012/bkcs.2011.32.4.1361
- Antithrombotic Phenolics from the Stems of Parthenocissus tricuspidata Possess Anti-inflammatory Effect vol.35, pp.6, 2007, https://doi.org/10.5012/bkcs.2014.35.6.1763