DOI QR코드

DOI QR Code

Dehydrogenation of Ethylbenzene to Styrene with CO2 over TiO2-ZrO2 Bifunctional Catalyst

  • Burri, David Raju (Laboratory of Nano-Green Catalysis, Department of Chemistry, Inha University) ;
  • Choi, Kwang-Min (Laboratory of Nano-Green Catalysis, Department of Chemistry, Inha University) ;
  • Han, Sang-Cheol (Laboratory of Nano-Green Catalysis, Department of Chemistry, Inha University) ;
  • Burri, Abhishek (Laboratory of Nano-Green Catalysis, Department of Chemistry, Inha University) ;
  • Park, Sang-Eon (Laboratory of Nano-Green Catalysis, Department of Chemistry, Inha University)
  • Published : 2007.01.20

Abstract

In the dehydrogenation of ethylbenzene to styrene, CO2 could play a role as an oxidant to increase conversion of ethylbenzene and stability as well over TiO2-ZrO2 mixed oxide catalysts. TiO2-ZrO2 catalysts were prepared by co-precipitation method and were characterized by BET surface area, bulk density, X-ray diffraction, temperature programmed desorption of NH3 and CO2. These catalysts were found to be X-ray amorphous with enhanced surface areas and acid-base properties both in number and strength when compared to the respective oxides (TiO2 and CO2). These catalysts were found to be highly active (> 50% conversion), selective (> 98%) and catalytically stable (10 h of time-on-stream) at 600 oC for the dehydrogenation of ethylbenzene to styrene. However, in the nitrogen stream, both activity and stability were rather lower than those in the stream with CO2. The TiO2-ZrO2 catalysts were catalytically superior to the simple oxide catalysts such as TiO2 and ZrO2. The synergistic effect of CO2 has clearly been observed in directing the product selectivity and prolonging catalytic activity.

Keywords

References

  1. Chang, J.-S.; Park, S.-E.; Park, M. S. Chem. Lett. 1997, 1123
  2. Park, M.-S.; Vislovskiy, V. P.; Changa, J.-S.; Shul, Y.-G.; Yoo, J. S.; Park, S.-E. Catal. Today 2003, 87, 205 https://doi.org/10.1016/j.cattod.2003.10.015
  3. Mimura, N.; Takahara, I.; Saito, M.; Hattori, T.; Ohkuma, K.; Ando, M. Catal. Today 1998, 45, 61 https://doi.org/10.1016/S0920-5861(98)00246-6
  4. Mimura, N.; Saito, M. Catal. Today 2000, 55, 173 https://doi.org/10.1016/S0920-5861(99)00236-9
  5. Park, J.-N.; Noh, J.; Chang, J.-S.; Park, S.-E. Catal. Lett. 2000, 65, 75
  6. Tanabe, K. Bull. Chem, Soc. Jpn. 1974, 47, 1064 https://doi.org/10.1246/bcsj.47.1064
  7. Seiyama, T. Metal Oxides and Their Catalytic Activities; Kodansha: Tokyo, 1978
  8. Kataoka, T.; Domestic, J. A. J. Catal. 1986, 112, 66
  9. Kung, H. H. J. Solid State Chem. 1984, 52, 191 https://doi.org/10.1016/0022-4596(84)90191-9
  10. Wang, I.; Chang, W. F.; Shiau, R. J.; Wu, J. C.; Chung, C. C. J. Catal. 1983, 83, 428 https://doi.org/10.1016/0021-9517(83)90067-2
  11. Wu, J. C.; Chung, C. C.; Ay, C. L.; Wang, I. J. Catal. 1984, 87, 98 https://doi.org/10.1016/0021-9517(84)90172-6
  12. Wang, I.; Wu, J. C.; Chung, C. C. Appl. Catal. 1985, 16, 89 https://doi.org/10.1016/S0166-9834(00)84072-5
  13. Arata, A.; Akutagawa, S.; Tanabe, K. Bull. Chem. Soc. Jpn. 1976, 49, 390 https://doi.org/10.1246/bcsj.49.390
  14. Arata, A.; Tanabe, K. Bull. Chem. Soc. Jpn. 1980, 53, 399 https://doi.org/10.1246/bcsj.53.53
  15. US Patent (1996) 5, 576, 467
  16. De Farias, R. F.; Arnold, U.; Martinez, L.; Schuchardt, U.; Jannini, M. J. D. M.; Airoldi, C. J. Phys. Chem. Solids 2003, 64, 2385 https://doi.org/10.1016/S0022-3697(03)00276-2
  17. Vishwanathan, V.; Roh, H.-S.; Kim, J.-W.; Jun, K.-W. Catal. Lett. 2004, 96, 23 https://doi.org/10.1023/B:CATL.0000029524.94392.9f
  18. Manriquez, M. E.; Lopez, T.; Gomez, R.; Navarrete, J. J. Mol. Catal. 2004, 220, 229 https://doi.org/10.1016/j.molcata.2004.06.003
  19. Hirashima, Y.; Nishiwaki, K.; Miyakoshi, A.; Tsuiki, H.; Ueno, A.; Nakabayashi, H. Bull. Chem. Soc. Jpn. 1988, 61, 1945 https://doi.org/10.1246/bcsj.61.1945
  20. Mao, D.; Chen, Q.; Lu, G. Appl. Catal. 2003, 244, 273 https://doi.org/10.1016/S0926-860X(02)00599-9
  21. Zou, H.; Li, Y. S. Appl. Catal. 2004, 265, 35 https://doi.org/10.1016/j.apcata.2004.01.015
  22. Maity, S. K.; Rana, M. S.; Bej, S. K.; Juarez, J. A.; Murali Dhar, G.; Prasada Rao, T. S. R. Catal. Lett. 2000, 72, 115
  23. Zou, H.; Lin, Y. S. Appl. Catal. 2004, 265, 35 https://doi.org/10.1016/j.apcata.2004.01.015
  24. Mao, D.; Lu, G.; Chen, Q.; Xie, Z.; Zhang, Y. Catal. Lett. 2001, 77, 119 https://doi.org/10.1023/A:1012787028360
  25. Fung, J.; Wang I. J. Catal. 1991, 130, 577 https://doi.org/10.1016/0021-9517(91)90137-S
  26. Berteau, P.; Delmon, B. Catal. Today 1989, 5, 121 https://doi.org/10.1016/0920-5861(89)80020-3
  27. Reddy, B. M.; Khan, A. Catal. Rev. 2005, 47, 257 https://doi.org/10.1081/CR-200057488
  28. Mimura, N.; Saito, M. Catal. Lett. 1999, 58, 59 https://doi.org/10.1023/A:1019049127309
  29. Cavani, F.; Trifiro, F. Appl. Catal. 1995, 133, 219 https://doi.org/10.1016/0926-860X(95)00218-9
  30. Sun, A.; Qin, Z.; Chen, S.; Wang, J. J. Mol. Catal. 2004, 210, 189 https://doi.org/10.1016/j.molcata.2003.09.016
  31. Ye, X.; Ma, N.; Hua, W.; Yue, Y.; Miao, C.; Xie, Z.; Gao, Z. J. Mol. Catal. 2004, 217, 103 https://doi.org/10.1016/j.molcata.2004.02.024
  32. Qin, Z.; Liu, J.; Sun, A.; Wang, J. Ind. Eng. Chem. Res. 2003, 42, 1329 https://doi.org/10.1021/ie020762y
  33. Badstube, T.; Papp, H.; Kustrowski, P.; Dziembaj, R. Catal. 1998, 55, 169
  34. Chang, J.-S.; Vislovskiy, V. P.; Park, M.-S.; Hong, D.-Y.; Yoo, J. S.; Park, S.-E. Green Chem. 2003, 5, 587 https://doi.org/10.1039/b304825j
  35. Park, S.-E.; Han, S.-C. J. Ind. Eng. Chem. 2004, 10, 1257
  36. Sugino, M.; Shimada, H.; Turuda, T.; Miura, H.; Ikenaga, N.; Suzuki, T. Appl. Catal. 1995, 121, 125 https://doi.org/10.1016/0926-860X(95)85015-5
  37. Ohishi, Y.; Kawabata, T.; Shishido, T.; Takaki, K.; Zhang, Q.; Wang, Y.; Takehira, K. J. Mol. Catal. 2005, 230, 49 https://doi.org/10.1016/j.molcata.2004.12.006

Cited by

  1. - and C-Covered Cu(111) Single Crystal Catalysts vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1559
  2. vol.2, pp.3, 2012, https://doi.org/10.1039/C1CY00281C
  3. Carbon dioxide utilization as a soft oxidant and promoter in catalysis vol.5, pp.11, 2012, https://doi.org/10.1039/c2ee22409g
  4. Catalysis by Doped Oxides vol.113, pp.6, 2013, https://doi.org/10.1021/cr300418s
  5. Oxidative Dehydrogenation of Ethylbenzene to Styrene with CO2 Over V2O5–Sb2O5–CeO2/TiO2–ZrO2 Catalysts vol.56, pp.18-20, 2013, https://doi.org/10.1007/s11244-013-0108-0
  6. Activity studies of vanadium, iron, carbon and mixed oxides based catalysts for the oxidative dehydrogenation of ethylbenzene to styrene: a review vol.5, pp.12, 2015, https://doi.org/10.1039/C5CY00996K
  7. Highly Active and Stable Pt–Sn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition vol.56, pp.25, 2017, https://doi.org/10.1021/acs.iecr.7b01598
  8. Oxidative Dehydrogenation of Ethylbenzene to Styrene with Carbon Dioxide over Fe2O3/TiO2–ZrO2 Catalyst: Influence of Chloride vol.124, pp.3-4, 2008, https://doi.org/10.1007/s10562-008-9475-8
  9. Dehydrogenation of Ethylbenzene to Styrene with Carbon Dioxide Over ZrO2-based Composite Oxide Catalysts vol.12, pp.1, 2008, https://doi.org/10.1007/s10563-007-9039-8
  10. Ethanol Dehydration over WO3/TiO2Catalysts Using Titania Derived from Sol-Gel and Solvothermal Methods vol.2019, pp.None, 2007, https://doi.org/10.1155/2019/4936292
  11. Microemulsion solventing-out co-precipitation strategy for fabricating highly active Cu-ZnO/Al2O3 dual site catalysts for reverse water gas shift vol.10, pp.8, 2007, https://doi.org/10.1039/c9cy02608h
  12. The Role of CO2 as a Mild Oxidant in Oxidation and Dehydrogenation over Catalysts: A Review vol.10, pp.9, 2007, https://doi.org/10.3390/catal10091075
  13. TiO2-ZrO2 Composite Oxide as an Acid-Base Bifunctional Catalyst for Self-Condensation of Cyclopentanone vol.59, pp.45, 2020, https://doi.org/10.1021/acs.iecr.0c03605
  14. Ethylbenzene dehydrogenation over Fe2O3 promoted TiO2-ZrO2 catalysts and corresponding conceptual fluidized bed process vol.120, pp.None, 2021, https://doi.org/10.1016/j.jtice.2021.03.005