DOI QR코드

DOI QR Code

Photo-Induced Cytotoxicity of Prodigiosin Analogues

  • Park, Gyung-Se (Department of Chemistry, College of Science and Technology, Kunsan National University) ;
  • Tomlinson, John T. (Department of Chemistry, Appalachian State University) ;
  • Misenheimer, Jacob A. (Department of Chemistry, Wake Forest University) ;
  • Kucera, Gregory L. (Section of Hematology-Oncology, Wake Forest University School of Medicine) ;
  • Manderville, Richard A. (Department of Chemistry, University of Guelph)
  • Published : 2007.01.20

Abstract

Prodigiosin (1) is the parent member of a class of polypyrrole natural products that exhibit promising anticancer activities. They can facilitate copper-promoted oxidative DNA damage by binding to copper ions, and this activity is thought to represent their mechanism of cytotoxicity in the dark. They also possess photoinduced cytotoxicity, although 1 is too toxic in the dark to be used effectively for the treatment of cancer by photodynamic therapies. To circumvent dark toxicity by prodigiosins, the semi-synthetic analogue 2, in which the N-pyrrolic atoms of 1 are methylated to block copper coordination, and the synthetic phenyl analogues 3 and 4, which lack the copper-coordinating A-pyrrole ring of 1, were tested for their ability to inhibit colony formation of HL-60 cancer cells in the absence and presence of visible light (λ > 495 nm). Our results show that 2-4 lack cytotoxicity in the dark, but are able to inhibit colony formation of HL-60 cells following irradiation for 30 min. The synthetic derivative 4 exhibits photo-induced cytotoxicity similar to that of the natural product 1, demonstrating the potential use of prodigiosin-based compounds for treatment of cancers following irradiation with visible light.

Keywords

References

  1. Gerber, N. N. Crit. Rev. Microbiol. 1975, 3, 469 https://doi.org/10.3109/10408417509108758
  2. Manderville, R. A. Curr. Med. Chem.-Anti-Cancer Agents 2001, 1, 195
  3. Furstner, A. Angew. Chem. Int. Ed. 2003, 42, 3582 https://doi.org/10.1002/anie.200300582
  4. D'Alessio, R.; Bargiotti, A.; Carlini, O.; Colotta, F.; Ferrari, M.; Gnocchi, P.; Isetta, A.; Mongelli, N.; Motta, P.; Rossi, A.; Rossi, M.; Tibolla, M.; Vanotti, E. J. Med. Chem. 2000, 43, 2557 https://doi.org/10.1021/jm001003p
  5. Stepkowski, S. M.; Erwin-Cohen, R. A.; Behbod, F.; Wang, M. E.; Qu, X.; Tejpal, N.; Nagy, Z. S.; Kahan, B. D.; Kirken, R. A. Blood 2002, 99, 680
  6. Boger, D. L.; Patel, M. J. Org. Chem. 1988, 53, 1405 https://doi.org/10.1021/jo00242a013
  7. Yamamoto, C.; Takemoto, H.; Kuno, K.; Yamamoto, D.; Tsubura, A.; Kamata, K.; Hirata, H.; Yamamoto, A.; Kano, H.; Seki, T.; Inoue, K. Hepatology 1999, 30, 894 https://doi.org/10.1002/hep.510300417
  8. Diaz-Riuz, C.; Montaner, B.; Perez-Tomas, R. Histol. Histopathol. 2001, 16, 415
  9. Montaner, B.; Perez-Tomas, R. Life Sci. 2001, 68, 2025
  10. Melvin, M. S.; Ferguson, D. C.; Lindquist, N.; Manderville, R. A. J. Org. Chem. 1999, 64, 6861 https://doi.org/10.1021/jo990944a
  11. Melvin, M. S.; Tomlinson, J. T.; Saluta, G. R.; Kucera, G. L.; Lindquist, N.; Manderville, R. A. J. Am. Chem. Soc. 2000, 122, 6333 https://doi.org/10.1021/ja0000798
  12. Melvin, M. S.; Wooton, K. E.; Rich, C. C.; Saluta, G. R.; Kucera, G. L.; Lindquist, N.; Manderville, R. A. J. Inorg. Biochem. 2001, 87, 129 https://doi.org/10.1016/S0162-0134(01)00338-5
  13. Fürstner, A.; Grabowski, E. J. ChemBioChem 2001, 9, 706
  14. Melvin, M. S.; Calcutt, M. W.; Noftle, R. E.; Manderville, R. A. Chem. Res. Toxicol. 2002, 15, 742 https://doi.org/10.1021/tx025508p
  15. Montaner, B.; Castillo-Avila, W.; Martinell, M.; Ollinger, R.; Aymami, J.; Giralt, E.; Perez-Tomas, R. Toxicol. Sciences 2005, 85, 870 https://doi.org/10.1093/toxsci/kfi149
  16. Park, G.; Tomlinson, J. T.; Melvin, M. S.; Wright, M. W.; Day, C. S.; Manderville, R. A. Org. Lett. 2003, 5, 113 https://doi.org/10.1021/ol027165s
  17. Melvin, M. S.; Tomlinson, J. T.; Park, G.; Day, C. S.; Saluta, G. R.; Kucera, G. L.; Manderville, R. A. Chem. Res. Toxicol. 2002, 15, 734 https://doi.org/10.1021/tx025507x
  18. Roth, M. M. Photochem. Photobiol. 1967, 6, 923
  19. Someya, N.; Nakajima, M.; Hamamoto, H.; Yamaguchi, I.; Akutsu, K. J. Gen. Plant Pathol. 2004, 70, 367 https://doi.org/10.1007/s10327-004-0134-7
  20. Vicenta, M. G. H. Curr. Med. Chem.-Anti-Cancer Agents 2001, 1, 175
  21. D'Alessio, R.; Rossi, A. Synlett 1996, 513
  22. Liddell, P. A.; Forsyth, T. P.; Senge, M. O.; Smith, K. M. Tetrahedron 1993, 49, 1343 https://doi.org/10.1016/S0040-4020(01)80505-6

Cited by

  1. Anticancer and immunosuppressive properties of bacterial prodiginines vol.2, pp.6, 2007, https://doi.org/10.2217/17460913.2.6.605
  2. Photo-induced anticancer activity and singlet oxygen production of prodigiosenes vol.17, pp.5, 2018, https://doi.org/10.1039/C8PP00060C
  3. Photoinduced Cytotoxicity of Prodigiosin Analogues. vol.38, pp.22, 2007, https://doi.org/10.1002/chin.200722180
  4. A possible mechanism for visible light-induced wound healing vol.40, pp.7, 2008, https://doi.org/10.1002/lsm.20668
  5. Callus Distraction for Brachymetatarsia of the Toe vol.58, pp.1, 2009, https://doi.org/10.5035/nishiseisai.58.98