DOI QR코드

DOI QR Code

Environment Dependent Coherence of a Short DNA Charge Transfer System

  • Published : 2007.04.20

Abstract

Relationship between charge transfer mechanism and quantum coherence has been investigated using a realtime quantum dynamics approach. In the on-the-fly filtered propagator functional path integral simulation, by separating paths that belong to different mechanisms and by integrating contributions of correspondingly sorted paths, it was possible to accurately obtain quantitative contribution of different transport mechanisms. For a 5'-GAGGG-3' DNA sequence, we analyze charge transfer processes quantitatively such that the governing mechanism alters from coherent to incoherent charge transfer with respect to the friction strength arising from dissipative environments. Although the short DNA sequence requires substantially strong dissipation for completely incoherent hopping transfer mechanism, even a weak system-environment interaction markedly destroys the coherence within the quantum mechanical system and the charge transfer dynamics becomes incoherent to some degree. Based on the forward-backward path deviation analysis, the coherence variation depending on the environment is investigated numerically.

Keywords

References

  1. Porath, D.; Bezryadin, A.; De Vries, S.; Dekker, C. Nature 2000, 403, 635 https://doi.org/10.1038/35001029
  2. Cai, L.; Tabata, H.; Kawai, T. Appl. Phys. Lett. 2000, 77, 3105 https://doi.org/10.1063/1.1323546
  3. Boon, E. M.; Ceres, D. M.; Drummond, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotechnol. 2000, 18, 1096 https://doi.org/10.1038/80301
  4. Dandliker, P. J.; Holmlin, R. E.; Barton, J. K. Science 1997, 275, 1465 https://doi.org/10.1126/science.275.5305.1465
  5. Kelley, S. O.; Barton, J. K. Science 1999, 283, 375 https://doi.org/10.1126/science.283.5400.375
  6. Bixon, M.; Giese, B.; Wessely, R.; Langenbacher, T.; Michel- Beyerle, M. E.; Jortner, J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11713 https://doi.org/10.1073/pnas.96.21.11713
  7. Berlin, Y. A.; Burin, A. L.; Ratner, M. A. Chem. Phys. 2002, 275, 61 https://doi.org/10.1016/S0301-0104(01)00536-5
  8. Brozema, F. C.; Berlin, Y. A.; Siebbeles, L. D. J. Am. Chem. Soc. 2000, 122, 10903 https://doi.org/10.1021/ja001497f
  9. Voityuk, A. A.; Rösch, N.; Bixon, M.; Jortner, J. J. Phys. Chem. B 2000, 104, 9740 https://doi.org/10.1021/jp001109w
  10. Henderson, P. T.; Jones, D.; Hampikian, G.; Kan, Y.; Schuster, G. B. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8353 https://doi.org/10.1073/pnas.96.15.8353
  11. Sartor, V.; Boone, E.; Schuster, G. B. J. Phys. Chem. B 2001, 105, 11057 https://doi.org/10.1021/jp0035941
  12. Conwell, E. M.; Rakhmanova, S. V. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4556 https://doi.org/10.1073/pnas.050074497
  13. Zhang, H.; Li, X.-Q.; Hang, P.; Yu, X. Y.; Yan, Y. J. Chem. Phys. 2002, 117, 4578
  14. Kim, H.; Sim, E. J. Phys. Chem. B 2006, 110, 631 https://doi.org/10.1021/jp053893w
  15. Sim, E. J. Chem. Phys. 2001, 115, 4450 https://doi.org/10.1063/1.1394208
  16. Sim, E.; Kim, H. J. Phys. Chem. B 2006, 110, 13642 https://doi.org/10.1021/jp056763w
  17. Voityuk, A.; Jortner, J.; Bixon, M.; Rösch, N. Chem. Phys. Lett. 2000, 324, 430 https://doi.org/10.1016/S0009-2614(00)00638-2
  18. Bixon, M.; Jortner, J. Chem. Phys. 2002, 281, 393 https://doi.org/10.1016/S0301-0104(02)00495-0
  19. Troisi, A.; Orlandi, G. Chem. Phys. Lett. 2001, 344, 509 https://doi.org/10.1016/S0009-2614(01)00792-8
  20. Renger, T.; Marcus, R. A. J. Phys. Chem. A 2003, 107, 8404 https://doi.org/10.1021/jp026789c
  21. Wan, C.; Fiebig, T.; Kelley, S. O.; Treadway, C. R.; Barton, J. K.; Zewail, A. H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6014 https://doi.org/10.1073/pnas.96.11.6014

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  2. Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1233
  3. Degree of Coherence of Single-Component Molecular Wires: Dependence on Length, Coupling Strength, and Dissipative Medium vol.114, pp.2, 2007, https://doi.org/10.1021/jp9092942