DOI QR코드

DOI QR Code

Size Determination of Pollens Using Gravitational and Sedimentation Field-Flow Fractionation

  • Published : 2007.04.20

Abstract

Pollens are known to be an allergen. They penetrate human respiratory system, triggering a type of seasonal allergic rhinitis called pollen allergy (hey fever). The purpose of this study is to test two field-flow fractionation (FFF) techniques, gravitational FFF (GrFFF) and sedimentation FFF (SdFFF), for their applicability to sizecharacterization of micron-sized pollens. Both GrFFF and SdFFF are elution techniques, providing sequential elution of particles based on size. They allow the size distribution as well as the mean size of the sample to be determined from the elution time. In this study, GrFFF and SdFFF were used to determine the size distribution of Paper Mulberry and Bermuda Grass pollens. For the Paper Mulberry pollen, the mean size obtained by GrFFF is 12.7 μm, and agrees rather well with the OM data with the relative error of 8.0%. For the Bermuda Grass pollen, the mean size obtained by GrFFF is 32.6 μm with the relative error of 12.3%. The mean sizes determined by SdFFF are 12.4 (relative error = 10.1%) and 27.1 μm (relative error = 5.2%) for the Paper Mulberry and the Bermuda Grass pollen, respectively. Although SdFFF tends to yield more accurate size distribution due to lower band broadening under the field strength higher than 1 G, the sizes determined by GrFFF were not significantly different from those by SdFFF.

Keywords

References

  1. Riediker, M.; Koller, T.; Monn, C. Journal of the British Society for Allergy and Clinical Immunology 2000, 6, 867
  2. Lee, S.-Y.; Hong, C.-H. The Korea Academy of Pediatric Allergy and Respiratory Disease 1996, 6, 92
  3. Noon, L.; Cantab, B. C. The Lancet. 1911, 1572
  4. Liaw, S. H.; Lee, D.-Y.; Chow, L. P.; Lau, G. X.; Su, S. N. Biochemical and Biophysical Research Communications 2001, 280, 738
  5. Giddings, J. C. Science 1993, 260, 1456 https://doi.org/10.1126/science.8502990
  6. Ji, E.; Choi, S.-H.; Yoon, K. R.; Chun, J.-H.; Lee, S. Bull. Korean Chem. Soc. 2006, 27(9), 1433 https://doi.org/10.5012/bkcs.2006.27.9.1433
  7. Kim, H.; Lee, H.; Moon, M. H. Bull. Korean Chem. Soc. 2006, 27(3), 413 https://doi.org/10.5012/bkcs.2006.27.3.413
  8. Reschiglian, P.; Torsi, G. Chromatophia 1995, 40, 467
  9. Bernard, A.; Paulet, B.; Colin, V.; Cardot, J. P. Trends in Analytical Chemistry 1995, 14(6), 266
  10. Rasouli, S.; Assidjo, E.; Chianea, T.; Cardot, J. P. J. Chromatogr. 2001, 754, 11 https://doi.org/10.1016/S0378-4347(00)00581-8
  11. Dugay, A. M.; Cardot, J. P.; Czok, M.; Guernet, M.; Andreux, J. P. J. Chromatogr. B 1992, 579, 73 https://doi.org/10.1016/0378-4347(92)80364-V
  12. Christian, B.; Cardot, J. P.; Vincent, A.; Christian, P.; Annabelle, M. D.; Bruno, B.; Genevieve, M. J. Chromatogr. B 1991, 579, 143
  13. Bernard, A.; Bories, C.; Loiseau, P. M.; Cardot, J. P. J. Chromatogr. B 1995, 664(2), 444 https://doi.org/10.1016/0378-4347(94)00498-T
  14. Sanz, R.; Puignou, L.; Reschiglian, P.; Galceran, M. T. J. Chromatogr. A 2001, 919, 339 https://doi.org/10.1016/S0021-9673(01)00807-X
  15. Sanz, R.; Torsello, B.; Reschiglian, P.; Puignou, L.; Galceran, M. T. J. Chromagr. A 2002, 996, 135
  16. Contado, C.; Reschiglian, P.; Faccini, S.; Zattoni, A.; Dondi, F. J. Chromatogr. A 2002, 871, 449 https://doi.org/10.1016/S0021-9673(99)01191-7
  17. Janouskova, J.; Budinska, M.; Plockova, J.; Chmelik, J. J. Chromatogr. A 2001, 914, 183 https://doi.org/10.1016/S0021-9673(00)01090-6
  18. Giddings, J. C.; Myers, M. N. Sep. Sci. Technol. 1978, 13, 637 https://doi.org/10.1080/01496397808057119
  19. Giddings, J. C.; Myers, M. N.; Caldwell, K. D.; Pav, J. W. J. Chromatogr. 1979, 185, 261 https://doi.org/10.1016/S0021-9673(00)85608-3
  20. Caldwell, K. D.; Nguyen, T. T.; Myers, M. N.; Giddings, J. C. Sep. Sci. Technol. 1979, 14, 935 https://doi.org/10.1080/01496397908058103
  21. Pazourek, J.; Chmelik, J. Chromatographia 1993, 35, 591 https://doi.org/10.1007/BF02267922
  22. Williams, P. S.; Koch, T.; Giddings, J. C. Chem. Eng. Commun. 1992, 111, 121 https://doi.org/10.1080/00986449208935984
  23. Yang, F. S.; Caldwell, K. D.; Giddings, J. C. J. Colloid Interface Sci. 1983, 92, 81 https://doi.org/10.1016/0021-9797(83)90118-2
  24. Giddings, J. C.; Myers, M. N.; Caldwell, K. D.; Fisher, S. R. Methods of Biochemical Analysis 1980, 26, 79 https://doi.org/10.1002/9780470110461.ch3
  25. Giddings, J. C. Sep. Sci. Technol. 1978, 13, 241 https://doi.org/10.1080/01496397808060222
  26. Richard, E. P.; Myers, M. N.; Giddings, J. C. Sep. Sci. Technol. 1984, 19, 307 https://doi.org/10.1080/01496398408068585
  27. Giddings, J. C.; Moon, M. H.; Williams, P. S.; Myers, M. N. Anal. Chem. 1991, 63, 1366 https://doi.org/10.1021/ac00014a006
  28. Moon, M. H.; Lee, S. H. J. Microcolumn Separations 1997, 9(7), 567
  29. Koch, T.; Giddings, J. C. Anal. Chem. 1986, 58, 994 https://doi.org/10.1021/ac00297a003
  30. Lee, S. H.; Giddings, J. C. Anal. Chem. 1988, 60, 2328 https://doi.org/10.1021/ac00172a004

Cited by

  1. Quantification of airway deposition of intact and fragmented pollens vol.21, pp.6, 2011, https://doi.org/10.1080/09603123.2011.574269
  2. Study on swelling of starch granules using gravitational field-flow fractionation (GrFFF) vol.24, pp.4, 2011, https://doi.org/10.5806/AST.2011.24.4.249
  3. Effect of Carrier Fluid Viscosity on Retention Time and Resolution in Gravitational Field-Flow Fractionation vol.83, pp.9, 2011, https://doi.org/10.1021/ac103002g
  4. Size Selectivity in Field-Flow Fractionation: Lift Mode of Retention with Near-Wall Lift Force vol.116, pp.25, 2012, https://doi.org/10.1021/jp212414e
  5. Machine learning for improved data analysis of biological aerosol using the WIBS vol.11, pp.11, 2018, https://doi.org/10.5194/amt-11-6203-2018
  6. Separation of Amylose and Amylopectin in Corn Starch Using Dual-programmed Flow Field-Flow Fractionation vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2489
  7. Different elution modes and field programming in gravitational field-flow fractionation : Effect of channel angle vol.1209, pp.1, 2008, https://doi.org/10.1016/j.chroma.2008.09.014