DOI QR코드

DOI QR Code

Evaluation Method on Destruction and Removal Efficiency of Perfluorocompounds from Semiconductor and Display Manufacturing

  • Lee, Jee-Yon (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Lee, Jin-Bok (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Moon, Dong-Min (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Souk, Jun-Hyung (Samsung Electronics Co., LTD) ;
  • Lee, Seung-Yeon (Samsung Advanced Institute of Technology) ;
  • Kim, Jin-Seog (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science)
  • Published : 2007.08.20

Abstract

Recently, the semiconductor and display industries have tried to reduce the emissions of perfluorocompounds (PFCs) from the globally environmental regulation. Total amount of PFC emission can be calculated from the flow rate and the partial pressures of PFCs. For the precise measurement of PFC emission amount, the mass flow controlled helium gas was continuously injected into the equipment of which scrubber efficiency is being measured. The partial pressures of PFCs and helium were accurately measured using a mass spectrometer in each sample extracted from inlet and outlet of the scrubber system. The flow rates are calculated from the partial pressures of helium and also, PFC destruction and removal efficiency (DRE) of the scrubber is calculated from the partial pressure of PFC and the flow rate. Under this method, the relative expanded uncertainties of the flow rate and the partial pressures of PFCs are ± 2% (k = 2) in case the concentrations of NF3 and SF6 are as low as 100 μmol/mol.

Keywords

References

  1. Van Brunt, R. J.; Herron, J. T. IEEE Trans. Electr. Insul. 1990, 25, 75 https://doi.org/10.1109/14.45235
  2. Tsai, W. T.; Chen, H. P.; Hsien, W. Y. Journal of Loss Prevention in the Process Industries 2002, 15, 65 https://doi.org/10.1016/S0950-4230(01)00067-5
  3. Houghton, J. T.; Meira Filho, L. G.; Callander, B. A.; Harris, N.; Kattenberg, A.; Maskell, K. Climate Change 1995: The Science of Climate Change, Cambridge University Press: New York, 1996
  4. Vartanian, V.; Goolsby, B.; Chatterjee, R.; Kachmarik, R.; Babbitt, D.; Reif, R.; Tonnis, E. J.; Graves, D. IEEE Tran. Semicon. Manufac. 2004, 17, 483 https://doi.org/10.1109/TSM.2004.837004
  5. Chang, M. B.; Chang, J. S. Ind. Eng. Chem. Res. 2006, 45, 4101 https://doi.org/10.1021/ie051227b
  6. Molina, L. T.; Wooldridge, P. J.; Molina, M. J. Geophys. Res. Lett. 1995, 22, 1873 https://doi.org/10.1029/95GL01669
  7. Radoiu, M. T. Radiation Physics and Chemistry 2004, 69, 113 https://doi.org/10.1016/S0969-806X(03)00455-9
  8. Stoffels, W. W.; Stoffels, E.; Tachibana, K. Journal of Vacuum Science & Technology A 1998, 16, 87 https://doi.org/10.1116/1.581016
  9. Johnson, A. D.; Ridgeway, R. G.; Maroulis, P. J. IEEE Tran. Semicon. Manufac. 2004, 17, 491 https://doi.org/10.1109/TSM.2004.835700
  10. Mohindra, V.; Chae, H.; Sawin, H. H.; Mocella, M. T. IEEE Tran. Semicon. Manufac. 1997, 10, 399 https://doi.org/10.1109/66.618213
  11. Chan, E. M.; Loh, G.; Allgood, C. C. IEEE Tran. Semicon. Manufac. 2004, 17, 497 https://doi.org/10.1109/TSM.2004.835712
  12. IPCC Guideline, Good practice guidance and uncertainty management in national greenhouse gas inventories, Intergovernmental Panel on Climate Change; 2000; Chapter 3.6, p 243
  13. Li, S. N.; Hsu, J. N.; Shih, H. Y.; Lin, S. J.; Hong, J. L. Solid State Technology 2002, 45, 157
  14. Guber, A. E.; Kohler, U. J. Mol. Struct. 1995, 348, 209 https://doi.org/10.1016/0022-2860(95)08626-7
  15. Fujii, T.; Arulmozhiraja, S.; Nakamura, M.; Shiokawa, Y. Anal. Chem. 2001, 73, 2937
  16. Stoffels, E.; Stoffels, W. W.; Tachibana, K. Rev. Sci. Instrum. 1998, 69, 116 https://doi.org/10.1063/1.1148486
  17. Li, S. N.; Hsu, J. N.; Leo, G. H. Semiconductor Fabtech, 14th ed; 2005; p 63
  18. Kim, J. S.; Moon, D. M.; Kato, K.; Leonid, A.; Konopelko, L.; Kustikov, Y. A.; Guenther, F. R. Metrologia 2006, 43, 08009 https://doi.org/10.1088/0026-1394/43/1A/08009
  19. Lee, J. Y.; Yoo, H. S.; Park, J. S.; Hwang, K. J.; Kim, J. S. J. Chem. Edu. 2005, 82, 288 https://doi.org/10.1021/ed082p288
  20. International Organization for Standardization, ISO 6142: Gas analysis -Preparation of Calibration Gas Mixtures-Gravimetric Methods, 2nd ed; 2001
  21. Lee, J. Y.; Yoo, H. S.; Marti, K.; Moon, D. M.; Lee, J. B.; Kim, J. S. J. Geophys. Res. 2006, 111, D05302 https://doi.org/10.1029/2005JD006551
  22. Park, S. Y.; Kim, J. S.; Lee, J. B.; Esler, M. B.; Davis, R. S.; Wielgosz, R. I. Metrologia 2004, 41, 387 https://doi.org/10.1088/0026-1394/41/6/005
  23. Moon, D. M.; Lee, J. B.; Lee, J. Y.; Kim, D. H.; Lee, S. H.; Lee, M. G.; Kim, J. S. Anal. Sci. Tech. 2006, 19, 535

Cited by

  1. Reactive and nonreactive quenching of O(1D) by the potent greenhouse gases SO2F2, NF3, and SF5CF3 vol.107, pp.15, 2010, https://doi.org/10.1073/pnas.0911228107
  2. Life-cycle greenhouse gas effects of introducing nano-crystalline materials in thin-film silicon solar cells vol.19, pp.4, 2010, https://doi.org/10.1002/pip.1058
  3. Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation vol.369, pp.1943, 2011, https://doi.org/10.1098/rsta.2011.0006
  4. Perfluorocarbon Destruction and Removal Efficiency: Considering the Byproducts and Energy Consumption of an Abatement System for Microelectronics Manufacturing vol.27, pp.4, 2014, https://doi.org/10.1109/TSM.2014.2362942
  5. Nitrogen trifluoride in the global atmosphere vol.35, pp.20, 2008, https://doi.org/10.1029/2008GL035913
  6. The missing greenhouse gas vol.1, pp.808, 2007, https://doi.org/10.1038/climate.2008.72
  7. Assessment of removal efficiency of perfluorocompounds (PFCs) in a semiconductor fabrication plant by gas chromatography vol.76, pp.9, 2009, https://doi.org/10.1016/j.chemosphere.2009.06.039
  8. 압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발 vol.23, pp.2, 2017, https://doi.org/10.7464/ksct.2017.23.2.181