DOI QR코드

DOI QR Code

Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis

  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Lee, Cheul-Kyu (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2007.12.20

Abstract

V2O5/TiO2-ZrO2 catalyst modified with V2O5 was prepared by adding Ti(OH)4-Zr(OH)4 powder into an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using XRD, DSC, solid-state 51V NMR, and FTIR. In the case of calcination temperature of 500 oC, for the catalysts containing low loading V2O5 below 25 wt % vanadium oxide was in a highly dispersed state, while for catalysts containing high loading V2O5 equal to or above 25 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2. The strong acid sites were formed through the bonding between dispersed V2O5 and TiO2-ZrO2. The larger the dispersed V2O5 amount, the higher both the acidity and catalytic activities for acid catalysis.

Keywords

References

  1. Nakagawa, Y.; Ono, T.; Miyata, H.; Kubokawa, Y. J. Chem. Soc., Faraday Trans. 1 1983, 79, 2929 https://doi.org/10.1039/f19837902929
  2. Miyata, H.; Kohno, M.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc. Faraday Trans. 1 1989, 85, 3663 https://doi.org/10.1039/f19898503663
  3. Reddy, B. M.; Ganesh, I.; Chowdhury, B. Catal. Today 1999, 49, 115 https://doi.org/10.1016/S0920-5861(98)00415-5
  4. Lakshmi, L. J.; Ju, Z.; Alyea, E. C. Langmuir 1999, 15, 3521 https://doi.org/10.1021/la981103m
  5. Doh, I. J.; Pae, Y. I.; Sohn, J. R. J. Ind. Eng. Chem. 1999, 5, 161
  6. Forzatti, P.; Tronoconi, E.; Busca, G.; Titarellp, P. Catal. Today 1987, 1, 209 https://doi.org/10.1016/0920-5861(87)80040-8
  7. Busca, G.; Elmi, A. S.; Forzatti, P. J. Phys. Chem. 1987, 91, 5263 https://doi.org/10.1021/j100304a026
  8. Centi, G.; Militerno, S.; Perathoner, S.; Riva, A.; Barambilla, G. J. Chem. Soc. Chem. Commun. 1991, 88
  9. Centi, G.; Perathoner, S.; Kartheuser, B.; Rohan, D.; Hoidnett, B. K. Appl. Catal. B 1992, 1, 129 https://doi.org/10.1016/0926-3373(92)80038-2
  10. Matralis, H. M.; Ciardelli, M.; Ruwet, M.; Grange, P. J. Catal. 1995, 157, 368 https://doi.org/10.1006/jcat.1995.1302
  11. Mastikhin, V. M.; Terskikh, V. V.; Lapina, O. B.; Filiminova, S. V.; Seidl, M.; Knovinger, H. J. Catal. 1995, 156, 1 https://doi.org/10.1006/jcat.1995.1225
  12. Elmi, A. S.; Tronoconi, E.; Cristiani, C.; Martin, J. P. G.; Forzatti, P. Ind. Eng. Chem. Res. 1989, 84, 237
  13. Miyata, H.; Fujii, K.; Ono, T.; Kubokawa, Y.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1 1987, 83, 675
  14. Cavani, F.; Centi, G.; Foresti, E.; Trifiro, F. J. Chem. Soc., Faraday Trans. 1 1988, 84, 237 https://doi.org/10.1039/f19888400237
  15. Bond, G. C.; Tahir, S. F. Appl. Catal. 1991, 71, 1 https://doi.org/10.1016/0166-9834(91)85002-D
  16. Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. Chemtech 1985, 756
  17. Wong, W. C.; Nobe, K. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 563
  18. Roozeboom, F.; Cordingley, P. D.; Gellings, P. J. J. Catal. 1981, 68, 464 https://doi.org/10.1016/0021-9517(81)90116-0
  19. Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J. Bull. Chem. Soc. Jpn. 1974, 47, 1064 https://doi.org/10.1246/bcsj.47.1064
  20. Wu, J. C.; Chung, C. S.; Ay, C. L.; Wang, I. J. Catal. 1984, 87, 98 https://doi.org/10.1016/0021-9517(84)90172-6
  21. Fung, J.; Wang, F. J. Catal. 1991, 130, 577 https://doi.org/10.1016/0021-9517(91)90137-S
  22. Reddy, E. P.; Rojas, T. C.; Fernández, A. Langmuir 2000, 16, 4217 https://doi.org/10.1021/la9912545
  23. Zorn, M. E.; Tompkins, D. T.; Zeltner, W. A.; Anderson, M. A. Appl. Catal. B: Environmental 1999, 23, 1 https://doi.org/10.1016/S0926-3373(99)00067-3
  24. Miciukiewicz, J.; Mang, T.; Knozinger, H. Appl. Catal. A 1995, 122, 151 https://doi.org/10.1016/0926-860X(94)00236-3
  25. Park, E. H.; Lee, M. H.; Sohn, J. R. Bull. Korean Chem. Soc. 2000, 21, 913
  26. Sohn, J. R.; Lee, S. H. Catal. Lett. 2007, 118, 203 https://doi.org/10.1007/s10562-007-9163-0
  27. Sohn, J. R.; Lee, S. G.; Shin, D. C. Bull. Korean Chem. Soc. 2006, 27, 1623 https://doi.org/10.5012/bkcs.2006.27.10.1623
  28. Sohn, J. R.; Kim, H. W.; Lim, J. S. J. Ind. Eng. Chem. 2006, 12, 104
  29. Sohn, J. R.; Lee, S. H. Appl. Catal. A:Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  30. Hayashi, S.; Hayamizu, K. Bull. Chem. Soc. Jpn. 1990, 63, 961 https://doi.org/10.1246/bcsj.63.961
  31. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170 https://doi.org/10.1006/jcat.1996.0076
  32. Mori, K.; Miyamoto, A.; Murakami, Y. J. Chem. Soc. Faraday Trans. 1987, 83, 3303 https://doi.org/10.1039/f19878303303
  33. Bjorklund, R. B.; Odenbrand, C. U. I.; Brandin, J. G. M.; Anderson, L. A. H.; Liedberg, B. J. Catal. 1989, 119, 187 https://doi.org/10.1016/0021-9517(89)90145-0
  34. Roozeboom, F.; Mittelmelijer-Hazeleger, M. C.; Moulijn, J. A.; Medema, J.; de Beer, U. H. J.; Gelling, P. J. J. Phys. Chem. 1980, 84, 2783
  35. Eckert, H.; Wachs, I. E. J. Phys. Chem. 1989, 93, 6796 https://doi.org/10.1021/j100355a043
  36. Reddy, B. M.; Reddy, E. P.; Srinivas, S. T.; Mastikhim, V. M.; Nosov, N. V.; Lapina, O. B. J. Phys. Chem. 1992, 96, 7076 https://doi.org/10.1021/j100196a043
  37. Le Costumer, L. R.; Taouk, B.; Le Meur, M.; Payen, E.; Guelton, M.; Grimblot, J. J. Phys. Chem. 1988, 92, 1230 https://doi.org/10.1021/j100316a044
  38. Narsimha, K.; Reddy, B. M.; Rao, P. K.; Mastikhin, V. M. J. Phys. Chem. 1990, 94, 7336 https://doi.org/10.1021/j100382a003
  39. Sobalik, Z.; Lapina, O. B.; Novgorodova, O. N.; Mastikhin, V. M. Appl. Catal. 1990, 63, 191 https://doi.org/10.1016/S0166-9834(00)81715-7
  40. Pae, Y. I.; Lee, S. H.; Sohn, J. R. Catal. Lett. 2005, 99, 241 https://doi.org/10.1007/s10562-005-2130-8
  41. Mercera, P. D. L.; van Ommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H. Appl. Catal. 1990, 57, 127 https://doi.org/10.1016/S0166-9834(00)80728-9
  42. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126 https://doi.org/10.1021/la00025a029
  43. Yu, J. C.; Lin, J.; Kwok, R. W. M. J. Phys. Chem. B 1998, 102, 5094 https://doi.org/10.1021/jp980332e
  44. Sohn, J. R.; Park, M. Y. Langmuir 1998, 14, 6140 https://doi.org/10.1021/la980222z
  45. Sohn, J. R.; Kwon, S. H.; Shin, D. C. Appl. Catal. A:Gen. 2007, 317, 216 https://doi.org/10.1016/j.apcata.2006.10.015
  46. Sohn, J. R.; Han, J. S.; Kim, H. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2005, 26, 755 https://doi.org/10.5012/bkcs.2005.26.5.755
  47. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052 https://doi.org/10.1021/j100332a042
  48. Sohn, J. R.; Jang, H. J. J. Mol. Catal. 1991, 64, 349 https://doi.org/10.1016/0304-5102(91)85143-P
  49. Decanio, S. J.; Sohn, J. R.; Paul, P. O.; Lunsford, J. H. J. Catal. 1986, 10, 132
  50. Sohn, J. R.; Han, J. S.; Lim, J. S. J. Ind. Eng. Chem. 2004, 1, 1003
  51. Tanabe, K. Solid Acids and Bases; Kodansha: Tokyo, 1970; p 103
  52. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 6, 29
  53. Sohn, J. R.; Chun, E. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2003, 24, 1785 https://doi.org/10.5012/bkcs.2003.24.12.1785
  54. Xie, Y. C.; Tang, Y. Q. Adv. Catal. 1990, 37, 1 https://doi.org/10.1016/S0360-0564(08)60362-4
  55. Arata, K. Adv. Catal. 1990, 37, 165 https://doi.org/10.1016/S0360-0564(08)60365-X
  56. Liu, Z.; Chen, Y. J. Catal. 1998, 177, 314 https://doi.org/10.1006/jcat.1998.2123
  57. Chen, K.; Xie, S.; Iglesia, E.; Bell, A. T. J. Catal. 2000, 189, 421 https://doi.org/10.1006/jcat.1999.2720

Cited by

  1. VOx/Zr–SBA-15 catalysts for selective oxidation of ethanol to acetaldehyde pp.1336-9075, 2017, https://doi.org/10.1007/s11696-017-0336-z
  2. An IR spectroscopy assessment of the surface acidity of mesoporous VOx-SiO2 catalysts vol.164, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2012.05.041