DOI QR코드

DOI QR Code

Catalytic Enantioselective Fluorination Reactions of α-Cyano Acetates and α-Cyanophosphonates Using Chiral Palladium Complexes

  • Kim, Sun-Mi (Department of Chemistry, Soonchunhyang University) ;
  • Kang, Young-Ku (Department of Chemistry, Soonchunhyang University) ;
  • Cho, Min-Je (Department of Chemistry, Soonchunhyang University) ;
  • Mang, Joo-Yang (Department of Chemistry, Soonchunhyang University) ;
  • Kim, Dae-Young (Department of Chemistry, Soonchunhyang University)
  • 발행 : 2007.12.20

초록

The catalytic enantioselective electrophilic fluorinations of active methane compounds promoted chiral palladium complexes have been developed. Treatment of α-cyano acetates and α-cyanoalkylphosphonates with N-fluorobenzenesulfonimide as the fluorine source under mild reaction conditions afforded the corresponding α-cyano-α-fluorinated adducts in high yields with excellent enantiomeric excesses (up to 99% ee). These reactions can be conducted in alcoholic solvents without any precaution to exclude water and moisture.

키워드

참고문헌

  1. Chambers, R. D. Fluorine in Organic Chemistry; Blackwell: Oxford, 2004
  2. Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, 2004
  3. Hiyama, T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. Organofluorine Compounds: Chemistry and Applications; Springer-Verlag: Berlin, 2000
  4. Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; ACS Symposium Series 639; American Chemical Society: Washington, DC, 1996. For reviews
  5. Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013-1029 https://doi.org/10.1016/j.jfluchem.2006.06.007
  6. Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303-319 https://doi.org/10.1016/j.jfluchem.2006.01.011
  7. Bohm, H.-J.; Banmer, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637-643 https://doi.org/10.1002/cbic.200301023
  8. Smart, B. E. J. Fluorine Chem. 2001, 109, 3-11 https://doi.org/10.1016/S0022-1139(01)00375-X
  9. Ismail, F. M. D. J. Fluorine Chem. 2002, 118, 27-33 https://doi.org/10.1016/S0022-1139(02)00201-4
  10. Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions; Ramachandran, P. V., Ed.; ACS Symposium Series 746; American Chemical Society: Washington, DC, 2000
  11. Enantiocontrolled Synthesis of Fluoro-organic Compounds; Soloshonok, V. A., Ed.; John Wiley & Sons: Chichester, 1999. For review
  12. Bravo, P.; Resnati, G. Tetrahedron: Asymmetry 1990, 1, 661-692 https://doi.org/10.1016/S0957-4166(00)82374-5
  13. Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737-1755 https://doi.org/10.1021/cr941145p
  14. Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431-12477 https://doi.org/10.1016/S0040-4020(99)00748-6
  15. Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1-16 https://doi.org/10.1021/cr030685w
  16. Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147-1155
  17. Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119- 6149 https://doi.org/10.1021/cr030143e
  18. France, S.; Weatherwax, A.; Lectka, T. Eur. J. Org. Chem. 2005, 475-479
  19. Prakash, G. K. S.; Bier, P. Angew. Chem., Int. Ed. 2006, 45, 2172-2174 https://doi.org/10.1002/anie.200503783
  20. Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359-4362 https://doi.org/10.1002/1521-3773(20001201)39:23<4359::AID-ANIE4359>3.0.CO;2-P
  21. Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545-547 https://doi.org/10.1021/ol010281v
  22. Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530-14531 https://doi.org/10.1021/ja028464f
  23. Hamashima, Y.; Takano, H.; Hotta, D.; Sodeoka, M. Org. Lett. 2003, 5, 3225-3228 https://doi.org/10.1021/ol035053a
  24. Ma, J.-A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007-1011 https://doi.org/10.1016/j.tetasy.2004.01.014
  25. Shibata, N.; Ishimaru, T.; Nagai, T.; Kohno, J.; Toru, T. Synlett 2004, 1703-1706
  26. Shibata, N.; Kohno, J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem., Int. Ed. 2005, 44, 4204- 4207 https://doi.org/10.1002/anie.200501041
  27. Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191 https://doi.org/10.5012/bkcs.2007.28.12.2191
  28. Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115-3117 https://doi.org/10.1016/j.tetlet.2005.02.164
  29. Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451-1452 https://doi.org/10.5012/bkcs.2004.25.10.1451
  30. Bernardi, L.; Jorgensen, K. A. Chem. Commun. 2005, 1324-1326
  31. Hamashima, Y.; Suzuki, T.; Shimura, Y.; Shimizu, T.; Umebayashi, N.; Tamura, T.; Sasamoto, N.; Sodeoka, M. Tetrahedron Lett. 2005, 46, 1447- 1450 https://doi.org/10.1016/j.tetlet.2005.01.018
  32. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309-2311 https://doi.org/10.1021/ol050413a
  33. Kim, S. M.; Kang, Y. K.; Lee, K.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423-425 https://doi.org/10.5012/bkcs.2006.27.3.423
  34. Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135-1138
  35. Moriyama, K.; Hamashima, Y.; Sodeoka, M. Synlett 2007, 1139-1142
  36. Enders, D.; Huttl, M. R. M. Synlett 2005, 991-993
  37. Marigo, M.; Fielenbach, D.; Braunton, A.; Kjaersgaard, A.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703-3706 https://doi.org/10.1002/anie.200500395
  38. Steiner, D. D.; Mase, N.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2005, 44, 3706-3710 https://doi.org/10.1002/anie.200500571
  39. Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826-8828 https://doi.org/10.1021/ja051805f
  40. Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051- 15053 https://doi.org/10.1021/ja055545d
  41. Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions; Ramachandran, P. V., Ed.; ACS Symposium Series 746; American Chemical Society: Washington, DC, 2000
  42. Enantiocontrolled Synthesis of Fluoro-organic Compounds; Soloshonok, V. A., Ed.; John Wiley & Sons: Chichester, 1999
  43. Takeuchi, Y.; Konishi, M.; Hori, H.; Takehashi, T.; Kometani, T.; Kirk, K. L. Chem. Commun. 1998, 365-366
  44. Takeuchi, Y.; Konishi, M.; Hori, H.; Takehashi, T.; Kometani, T.; Kirk, K. L. Enantiomer 1999, 4, 339
  45. Takeuchi, Y.; Fukushima, A.; Tanaka, Y.; Takeuchi, Y.; Kabuto, K.; Kabuto, C. Chem. Commun. 2000, 787-788
  46. Fugiwara, T.; Sasaki, M.; Omata, K.; Kabuto, C.; Kabuto, K.; Takeuchi, Y. Tetrahedron: Asymmetry 2004, 15, 555-563 https://doi.org/10.1016/j.tetasy.2003.12.024
  47. Shibata, N.; Suzuki, E.; Takeuchi, Y. J. Am. Chem. Soc. 2000, 122, 10728-10729 https://doi.org/10.1021/ja002732x
  48. Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am. Chem. Soc. 2001, 123, 7001-7009 https://doi.org/10.1021/ja010789t
  49. Berkowitz, D. B.; Bose, M. J. Fluorine Chem. 2001, 112, 13 https://doi.org/10.1016/S0022-1139(01)00478-X
  50. Blackburn, G. M. Chem. Ind. (London) 1981, 134
  51. McKenna, C. E.; Shen, P. J. Org. Chem. 1981, 46, 4573 https://doi.org/10.1021/jo00335a053
  52. Nieschalk, J.; O'Hagan, D. Chem. Commun. 1995, 719
  53. Nieschalk, J.; O'Hagan, D. Chem. Commun. 1995, 719
  54. Jakeman, D. L.; Ivory, A. J.; Willamson, M. P.; Blackburn, G. M. J. Med. Chem. 1998, 41, 4493
  55. Jakeman, D. L.; Ivory, A. J.; Willamson, M. P.; Blackburn, G. M. J. Med. Chem. 1998, 41, 4493
  56. Berkowitz, D. B.; Bose, M.; Pfannenstiel, T. J.; Doukov, T. J. Org. Chem. 2000, 65, 4498 https://doi.org/10.1021/jo000220v
  57. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4265- 4568
  58. Cho, M. J.; Cho, M. G.; Huh, S. C.; Kim, S. M.; Lee, K.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2006, 27, 857- 861 https://doi.org/10.5012/bkcs.2006.27.6.857
  59. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897-6899 https://doi.org/10.1021/jo0401772
  60. Kim, D. Y.; Huh, S. C. Bull. Korean Chem. Soc. 2004, 25, 347-348 https://doi.org/10.5012/bkcs.2004.25.3.347
  61. Kim, D. Y.; Kim, S. M.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2003, 24, 1425-1426 https://doi.org/10.5012/bkcs.2003.24.10.1425
  62. Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.; Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435-443 https://doi.org/10.1081/SCC-120015774
  63. Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299-6301 https://doi.org/10.1016/S0040-4039(01)01237-0
  64. Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933-8938 https://doi.org/10.1016/S0040-4020(01)00891-2
  65. Li, K.; Hii, K. K. Chem. Commun. 2003, 1132-1133
  66. Li, K.; Horton, P. N.; Hursthouse, M. B.; Hii, K. K. J. Organometallic Chem. 2003, 665, 250-257. For Pd(II) chemistry, see https://doi.org/10.1016/S0022-328X(02)02138-1
  67. Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for 21st Century; John Willey & Son: Chichester, 2004. For a aquapalladium complex, see
  68. Shimada, T.; Bajracharya, G. B.; Yamamoto, Y. Eur. J. Org. Chem. 2005, 59-62, and references cited therein
  69. Kim, D. Y.; Oh, D. Y. Synth. Commun. 1987, 17, 953-957 https://doi.org/10.1080/00397918708063953
  70. Kim, D. Y.; Oh, D. Y. Bull. Korean Chem. Soc. 1997, 18, 994-998

피인용 문헌

  1. Recent Advances in Catalytic Enantioselective Fluorination Reactions vol.352, pp.16, 2010, https://doi.org/10.1002/adsc.201000624
  2. Catalytic Enantioselective Fluorination of α-Chloro-β-keto Esters in the Presence of Chiral Nickel Complexes vol.352, pp.16, 2010, https://doi.org/10.1002/adsc.201000515
  3. SPANphos Ligands in Palladium-Catalyzed Asymmetric Fluorination vol.2012, pp.25, 2012, https://doi.org/10.1002/ejoc.201200223
  4. Catalytic Enantioselective Cyclization and C3-Fluorination of Polyenes vol.135, pp.2, 2013, https://doi.org/10.1021/ja3116795
  5. Highly Enantioselective Preparation of Fluorinated Phosphonates by Michael Addition of α-Fluoro-β-ketophosphonates to Nitroalkenes vol.3, pp.4, 2013, https://doi.org/10.1002/ajoc.201300211
  6. Organocatalysis in Enantioselective α-Functionalization of 2-Cyanoacetates vol.356, pp.16, 2014, https://doi.org/10.1002/adsc.201400404
  7. Pd-catalyzed highly regio-, diastereo-, and enantioselective allylic alkylation of α-fluorophosphonates vol.50, pp.51, 2014, https://doi.org/10.1039/C4CC02158D
  8. Asymmetric Michael addition of α-fluoro-α-nitroalkanes to nitroolefins: facile preparation of fluorinated amines and tetrahydropyrimidines vol.50, pp.66, 2014, https://doi.org/10.1039/C4CC03513E
  9. Monofluorination of Organic Compounds: 10 Years of Innovation vol.115, pp.17, 2015, https://doi.org/10.1021/cr500706a
  10. Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions vol.115, pp.2, 2015, https://doi.org/10.1021/cr500277b
  11. Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
  12. Organocatalytic Asymmetric Michael Addition of α-Fluoro β-Ketophosphonate to Nitroalkenes vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10580
  13. Diastereo- and Enantioselective Conjugate Addition of α-Substituted Cyanoacetates to Maleimides Catalyzed by Binaphthyl-based Thiourea vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10439
  14. ChemInform Abstract: Catalytic Enantioselective Fluorination Reactions of α-Cyano Acetates and α-Cyanophosphonates Using Chiral Palladium Complexes. vol.39, pp.16, 2008, https://doi.org/10.1002/chin.200816044
  15. Enantioselective Electrophilic α-Amination of α-Cyanoketones Catalyzed by Chiral Nickel Complexes vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2036
  16. Enantioselective α-Hydrazination of α-Fluoro-β-Ketoesters Catalyzed by Bifunctional Organocatalysts vol.29, pp.11, 2007, https://doi.org/10.5012/bkcs.2008.29.11.2091
  17. Catalytic Enantioselective Diels-Alder Reactions of Acrylate Derivatives in the Presence of Chiral Binap-Palladium Complexes vol.29, pp.11, 2007, https://doi.org/10.5012/bkcs.2008.29.11.2093
  18. Enantioselective Fluorination of β-Keto Phosphonates and β-Ketoesters Catalyzed by Chiral Palladium Complexes vol.30, pp.4, 2007, https://doi.org/10.5012/bkcs.2009.30.4.829
  19. Palladium-catalyzed Asymmetric Mannich-type Reactions of α-Cyanoketones with N-Boc Aldimines vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1437
  20. Enantioselective Conjugate Addition of Fluoromalonate to Nitroalkenes Catalyzed by Chiral Nickel Complexes vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1439
  21. Organocatalytic Asymmetric Michael Addition of β-Ketoesters to Nitroalkenes vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1441
  22. Catalytic Asymmetric Electrophilic α-Amination of β-Ketoesters in the Presence of Chiral Nickel Complexes vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.249
  23. Catalytic Asymmetric Electrophilic α-Amination of β-Ketoesters in the Presence of Chiral Nickel Complexes vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.249
  24. Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization vol.32, pp.5, 2007, https://doi.org/10.5012/bkcs.2011.32.5.1773
  25. Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.291
  26. Asymmetric Mannich-type Reactions of Fluorinated Ketoesters with Binaphthyl-Modified Thiourea Catalysts vol.32, pp.4, 2007, https://doi.org/10.5012/bkcs.2011.32.4.1195
  27. Catalytic Asymmetric Mono‐Fluorination of α‐Keto Esters: Synthesis of Optically Active β‐Fluoro‐α‐Hydroxy and β‐Fluoro‐α‐Ami vol.124, pp.19, 2007, https://doi.org/10.1002/ange.201201303
  28. Catalytic Asymmetric Mono‐Fluorination of α‐Keto Esters: Synthesis of Optically Active β‐Fluoro‐α‐Hydroxy and β‐Fluoro‐α‐Ami vol.51, pp.19, 2012, https://doi.org/10.1002/anie.201201303
  29. Catalytic Enantioselective Fluorination of α-Cyanosulfones in the Presence of Chiral Palladium Complexes vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2481
  30. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs vol.118, pp.7, 2007, https://doi.org/10.1021/acs.chemrev.7b00778
  31. Enantioselective Organocatalytic Mannich Reaction and Fluorination Sequence of Pyrazolones to Isatin‐derived Ketimines vol.39, pp.12, 2018, https://doi.org/10.1002/bkcs.11625
  32. Synthesis of Fluoromethyl‐Substituted Cyclopentanones via Radical Fluorination and 1,2‐Alkyl Migration Cascade of Alkenyl Cyclobutanols vol.8, pp.5, 2007, https://doi.org/10.1002/ajoc.201900029
  33. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids vol.362, pp.22, 2020, https://doi.org/10.1002/adsc.202000966