Characterization of tensile damage progress in stitched CFRP laminates

  • Yoshimura, Akinori (Graduate school of Frontier Sciences, The University of Tokyo) ;
  • Yashiro, Shigeki (Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Okabe, Tomonaga (Department of Aerospace Engineering, Tohoku University) ;
  • Takeda, Nobuo (Graduate school of Frontier Sciences, The University of Tokyo)
  • Published : 2007.09.01

Abstract

This study experimentally and numerically investigated the tensile damage progress in stitched laminates. In particular, it focused on the effects of stitching on the damage progress. First, we experimentally confirmed that ply cracks and delamination appeared under load regardless of stitching. We then performed damage-extension simulation for stitched laminates using a layer-wise finite element model with stitch threads as beam elements, in which the damage (ply cracks and delamination) was represented by cohesive elements. A detailed comparison between observation and the simulated results confirmed that stitching had little effect on the onset and accumulation of ply cracks. Furthermore, we demonstrated that the stitch threads significantly suppressed the extension of the delamination.

Keywords

References

  1. L. Jain and Y.W. Mai, On the effect of stitching on mode I delamination toughness of laminated composites, Compos. Sci. Technol. 51, 331-345 (1994) https://doi.org/10.1016/0266-3538(94)90103-1
  2. L. Jain and Y. W. Mai, Determination of mode II delamination toughness of stitched laminated composites, Compos. Sci. Technol. 55, 241-253 (1995) https://doi.org/10.1016/0266-3538(95)00089-5
  3. K. A. Dransfield, L. K. Jain and Y. W. Mai, On the effects of stitching in CFRPs - I. Mode I delamination toughness, Compos. Sci. Technol. 58, 815-827 (1998) https://doi.org/10.1016/S0266-3538(97)00229-7
  4. Y. Iwahori, T. Ishikawa, Y. Hayashi and N. Watanabe, Study of interlaminar fracture toughness improvement on stitched CFRP laminates, J. Japan Soc. Compos. Mater. 26, 90-100 (2000) https://doi.org/10.6089/jscm.26.90
  5. L. Chen, P. G. Ifju and B. V. Sankar, Analysis of mode I and mode II tests for composites with translaminar reinforcements, J. Compos. Mater. 39, 1311-1333 (2005) https://doi.org/10.1177/0021998305050425
  6. E. Wu and J. Wang, Behavior of stitched laminates under in-plane tensile and transverse impact loading, J. Compos. Mater. 29, 2254-2279 (1995) https://doi.org/10.1177/002199839502901702
  7. F. Aymerich, P. Priolo and C. T. Sun, Static and fatigue behaviour of stitched graphite/epoxy composite laminates, Compos. Sci. Technol. 63, 907-917 (2003) https://doi.org/10.1016/S0266-3538(02)00314-7
  8. M. Z. Shah Khan and A. P. Mouritz, Fatigue behaviour of stitched GRP laminates, Compos. Sci. Technol. 56, 695-701 (1996) https://doi.org/10.1016/0266-3538(96)00052-8
  9. F. Larsson, Damage tolerance of a stitched carbon/epoxy laminate, Composites Part A 28A, 923-934 (1997)
  10. N. A. Warrior, C. D. Rudd and S. P. Gardner, Experimental studies of embroidery for the local reinforcement of composites structures 1. Stress concentrations, Compos. Sci. Technol. 59, 2125-2137 (1999) https://doi.org/10.1016/S0266-3538(99)00071-8
  11. N. Takeda and S. Ogihara, In situ observation and probabilistic prediction of microscopic failure processes in CFRP cross-ply laminates, Compos. Sci. Technol. 52, 183-195 (1994) https://doi.org/10.1016/0266-3538(94)90204-6
  12. T. Okabe, H. Sekine, J. Noda, M. Nishikawa and N. Takeda, Characterization of tensile damage and strength in GFRP cross-ply laminates, Mater. Sci. Engng A - Struct 383, 381-389 (2004) https://doi.org/10.1016/j.msea.2004.05.060
  13. S. Yashiro, N. Takeda, T. Okabe and H. Sekine, A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors, Compos. Sci. Technol. 65, 659-667 (2005) https://doi.org/10.1016/j.compscitech.2004.09.022
  14. R. Kamiya, B. A. Cheeseman, P. Popper and C. T.Wei, Some recent advantages in the fabrication and design of three-dimensional textile preforms: a review, Compos. Sci. Technol. 60, 33-47 (2000) https://doi.org/10.1016/S0266-3538(99)00093-7
  15. P. H. Geubelle and J. S. Baylor, Impact-induced delamination of composites: a 2D simulation, Composites Part B 29, 589-602 (1998) https://doi.org/10.1016/S1359-8368(98)00013-4
  16. D. R. J. Owen, Finite Elements in Plasticity. Pineridge Press, Swansea (1980)
  17. O. Majima and H. Suemasu, A finite element analysis of delamination propagation in composite laminates, J. Japan Soc. Compos. Mater. 25, 140-148 (1999) https://doi.org/10.6089/jscm.25.140
  18. H. Okamura, An Introduction to Linear Fracture Mechanics. Baifukan, Tokyo (1976)
  19. H. Suemasu and O. Majima, Multiple delaminations and their severity in circular axisymmetric plates subjected to transverse loading, J. Compos. Mater. 30, 441-453 (1996) https://doi.org/10.1177/002199839603000402
  20. Y. Yamada, N. Yoshimura and T. Sakurai, Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method, Int. Mech. Sci. 10, 343-354 (1968) https://doi.org/10.1016/0020-7403(68)90001-5
  21. M. A. Crisfield, G. Jelenic, Y. Mi, H. G. Zhong and Z. Fan, Some aspects of the nonlinear finite element method, Finite Elem. Anal. Des. 27, 19-40 (1997) https://doi.org/10.1016/S0168-874X(97)00004-8