The Semicontinuous Quasi-uniformity of a Frame

  • Received : 2004.08.19
  • Published : 2006.06.23

Abstract

The semicontinuous quasi-uniformity is known to be one of the most important examples of transitive quasi-uniformities. The aim of this paper is to show that various facts in classical topology connected with the semicontinuous quasi-uniformity and semicontinuous real functions may be easily extended to pointfree topology via a construction introduced by the authors in a previous paper. Several consequences are derived.

Keywords

References

  1. B. Banaschewski, The real numbers in pointfree topology, Textos de Matematica, Serie B, Vol. 12, University of Coimbra, 1997.
  2. M. J. Ferreira, Sobre a construcao de estruturas quase-uniformes em topologia sem pontos, Doctoral dissertation, University of Coimbra, 2004.
  3. M. J. Ferreira and J. Picado, A method of constructing compatible frame quasiuniformities, Kyungpook Math. J., 44(2004), 415-442.
  4. P. Fletcher, On totally bounded quasi-uniform spaces, Arch. Math., 21(1970), 396-401. https://doi.org/10.1007/BF01220937
  5. P. Fletcher and W. F. Lindgren, Quasi-uniformities with a transitive base, Pacific J. Math., 43(1972), 619-631. https://doi.org/10.2140/pjm.1972.43.619
  6. P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Marcel Dekker, New York, 1982.
  7. J. Frith, W. Hunsaker and J. Walters-Wayland, The Samuel compactification of a quasi-uniform frame, Topology Proc., 23(1998), 115-126.
  8. J. Gutierrez Garcia and J. Picado, On the algebraic representation of semicontinuity, J. Pure and Appl. Algebra (to appear).
  9. W. Hunsaker and W. F. Lindgren, Construction of quasi-uniformities, Math. Ann., 188(1970), 39-42. https://doi.org/10.1007/BF01435413
  10. W. Hunsaker and J. Picado, A note on totally boundedness, Acta Math. Hungar., 88(2000), 25-34. https://doi.org/10.1023/A:1006740208209
  11. W. Hunsaker and J. Picado, Frames with transitive structures, Appl. Categ. Structures, 10(2002), 63-79. https://doi.org/10.1023/A:1013372903430
  12. P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Mathematics, Vol. 3, Cambridge University Press, Cambridge, 1982.
  13. Li Yong-ming and Wang Guo-jun, Localic Katetov-Tong insertion theorem and localic Tietze extension theorem, Comment. Math. Univ. Carolinae, 38(1997), 801-814.
  14. R. Nielsen and C. Sloyer, Quasi-uniformizability, Math. Ann., 182(1969), 273-274. https://doi.org/10.1007/BF01350703
  15. J. Picado, Weil uniformities for frames, Comment. Math. Univ. Carolinae, 36(1995), 357-370.
  16. J. Picado, Frame quasi-uniformities by entourages, in: Symposium on Categorical Topology (University of Cape Town 1994), Department of Mathematics, University of Cape Town, 1999, pp. 161-175.
  17. J. Picado, A new look at localic interpolation theorems, Topology Appl., (to appear).
  18. J. Picado, A. Pultr and A. Tozzi, Locales, in: Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory, M. C. Pedicchio and W. Tholen (eds.), Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2004, 49-101.