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Abstract. The semicontinuous quasi-uniformity is known to be one of the most im-

portant examples of transitive quasi-uniformities. The aim of this paper is to show that

various facts in classical topology connected with the semicontinuous quasi-uniformity and

semicontinuous real functions may be easily extended to pointfree topology via a construc-

tion introduced by the authors in a previous paper. Several consequences are derived.

In a previous paper [3], we established a method of constructing transitive
compatible quasi-uniformities for an arbitrary frame, extending classical results of
Fletcher for quasi-uniform spaces [4]. This note is a sequel to [3], which ended with
the observation that, starting with the collection of all spectrum covers of a frame,
one gets, via that construction, the so called semicontinuous quasi-uniformity of the
frame. The present note aims to prove it. For this, we need to look at the frame
analogue of semicontinuous real functions.

The familiar adjointness between functors O : Top → Frm and Σ : Frm → Top
gives us a natural isomorphism

Frm(L,OX) ∼→ Top(X, ΣL).

For L the frame L(R) of reals one obtains

Frm(L(R),OX) ∼→ Top(X,R),

since ΣL(R) is homeomorphic to the space R of reals with euclidean topology. This
means that continuous real functions X → R are represented by frame homomor-
phisms L(R) → OX and hence regarding the frame homomorphisms L(R) → L,
for a general frame L, as the continuous real functions on L provides a natural
extension of the classical notion (see [1] for a detailed account).
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Analogously, Li and Wang [13] introduced upper semicontinuous real functions
on a frame L as frame homomorphisms Ll(R) → L on the lower frame of reals Ll(R)
(it should be pointed out that we interchange, with respect to the notation used by
Li and Wang, the lower and the upper frames of reals, in order to be in concordance
with the usual terminology for spaces). Now, this notion is more general than the
classical one and it is responsible for the need to incorporate some assumption in the
statements of the pointfree generalizations of classical results (see [2] and [17] for
examples). In fact, since the space Rl of reals with the lower topology {(−∞, a) :
a ∈ R} is not sober, there can be no frame L such that ΣL ∼= Rl. Therefore upper
semicontinuous real functions X → R are not represented by frame homomorphisms
Ll(R) → OX. What happens is that ΣLl(R) is homeomorphic to the space R ∪
{−∞} with the lower topology, so frame homomorphisms Ll(R) → OX describe
upper semicontinuous functions X → R ∪ {−∞}. If one wants to describe upper
semicontinuous real functions algebraically, by means of frame homomorphisms, one
has to restrict to frame maps f : Ll(R) → OX such that

∨
p∈Q∆f(−,p) = 1 (see [8]

for the details). Accordingly, we define an upper semicontinuous real function on
a frame L as a frame homomorphism f : Ll(R) → L such that

∨
p∈Q∆f(−,p) = 1.

Dually, a lower semicontinuous real function is a frame homomorphism g : Lu(R) →
L such that

∨
p∈Q∆g(p,−) = 1.

For example, for every x ∈ L, χu
x : Ll(R) → L defined by χu

x(−, p) = 1 if 1 < p,
χu

x(−, p) = x if 0 < p ≤ 1, and χu
x(−, p) = 0 otherwise, is an upper semicontinuous

function. Dually, χl
x : Lu(R) → L defined by χl

x(p,−) = 1 if p < 0, χl
x(p,−) = x if

0 ≤ p < 1, and χl
x(p,−) = 0 otherwise, is a lower semicontinuous function. We call

χu
x and χl

x the upper and lower characteristic functions on x.

In this note, we start by showing briefly that, with the language of Weil
entourages of [15], it is very easy and natural to define the quasi-metric quasi-
uniformity Q of the reals. Then, with the above notion of semicontinuity, we intro-
duce and study the semicontinuous quasi-uniformity SC(L) of a frame L and con-
clude that this is the coarsest quasi-uniformity E on CL for which each biframe ho-
momorphism h : L(R) → CL is a uniform homomorphism h : (L(R),Q) → (CL, E).
Some consequences are derived.

1. Preliminaries

We recall that a frame is a complete lattice L satisfying the infinite distributive
law x ∧ ∨

S =
∨{x ∧ s | s ∈ S} for all x ∈ L and S ⊆ L. The category Frm of

frames has as maps the homomorphisms which preserve the respective operations ∧
(including the top element 1) and

∨
(including the bottom element 0). For general

notions and facts concerning frames see [12] or [18]. We refer to Sections 1 and 2
of [3] for the specific background and notation on frames that we use. Here, we list
briefly some details of specific relevance to this paper.

The frame of reals [1] is the frame L(R) generated by all ordered pairs (p, q),
p, q ∈ Q, subject to the relations
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(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),

(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,

(R3) (p, q) =
∨{(r, s) | p < r < s < q},

(R4) 1 =
∨{(p, q) | p, q ∈ Q}.

Let Ll(R) be the subframe of L(R) generated by elements (−, q) :=
∨{(p, q) | p ∈ Q}

and, dually, let Lu(R) be the subframe of L(R) generated by elements (p,−) :=∨{(p, q) | q ∈ Q}. The biframe of reals is the biframe (L(R), Ll(R), Lu(R)). A
map from the set of generators of L(R) into a biframe (L,L1, L2) determines a
(unique) biframe homomorphism h : (L(R), Ll(R),Lu(R)) → (L, L1, L2) if and only
if it transforms the above relations (R1)-(R4) into identities in L and takes the
generators of Ll(R) to L1 and the generators of Lu(R) to L2.

Further, for any frame L, we denote by (CL,∇L,∆L) the congruence biframe
defined by closed and open congruences.

Concerning frame homomorphisms, a frame homomorphism h : L → M is called
dense if h(x) = 0 implies x = 0. For any frame homomorphism h : L → M , there is
its right adjoint h∗ : M → L such that h(x) ≤ y if and only if x ≤ h∗(y), explicitly
given by h∗(y) :=

∨{a ∈ L | h(a) ≤ y}.
For a frame L consider the frame D(L × L) of all non-void decreasing subsets

of L × L, ordered by inclusion. The coproduct L ⊕ L will be represented as usual
[12], as the subset of D(L×L) consisting of all C-ideals, that is, of those sets A for
which (x,

∨
S) ∈ A whenever {x}×S ⊆ A and (

∨
S, y) ∈ A whenever S×{y} ⊆ A.

Obviously, each x⊕ y := ↓(x, y) ∪ {(0, a), (a, 0) | a ∈ L} is a C-ideal.
If A,B ∈ D(L × L), then A ◦ B :=

∨{x ⊕ y | (x, z) ∈ A and (z, y) ∈
B for some z 6= 0}. Note that (h ⊕ h)(A) ◦ (h ⊕ h)(B) ⊆ (h ⊕ h)(A ◦ B) for ev-
ery frame homomorphism h.

Given A ∈ D(L × L), we denote by 〈A〉 the C-ideal generated by A. The
following properties, taken from [15], are decisive in our approach:

Lemma 1.1. For any A, B ∈ D(L× L), we have:

(a) 〈A〉 ◦ 〈B〉 = A ◦B.

(b) 〈A〉 ∩ 〈B〉 = 〈A ∩B〉.

An entourage [15] of L is an element E of L ⊕ L for which
∨{x ∈ L | (x, x) ∈

E} = 1. For a system E of Weil entourages of a frame L (always understood to be

non-void) we write x
E
/1 y if there exists E ∈ E such that st1(x, E) :=

∨{a ∈ L |
(a, b) ∈ E, b ∧ x 6= 0} ≤ y. Similarly, we write x

E
/2 y if there exists E ∈ E such that

st2(x,E) :=
∨{b ∈ L | (a, b) ∈ E, a ∧ x 6= 0} ≤ y.

The elements sti(x, E) (i = 1, 2) satisfy the following properties, for every
x, y ∈ L and every E ∈ D(L× L) [16]:

(S1) x ≤ y ⇒ sti(x,E) ≤ sti(y,E).
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(S2) sti(x, 〈E〉) = sti(x,E).

(S3) If E is a Weil entourage then x ≤ st1(x,E) ∧ st2(x,E).

(S4) For each frame map h : L → M and each E ∈ L ⊕ L, sti(h(x), h ⊕ h(E)) ≤
h(sti(x,E)).

Let Li(E) := {x ∈ L | x =
∨{y ∈ L | y E

/i x}} (i = 1, 2). A filter E of WEnt(L)
is a quasi-uniformity on L if (L,L1(E),L2(E)) is a biframe and, for each E ∈ E ,
there exists an F ∈ E such that F ◦ F ⊆ E.

Regarding quasi-uniform frames, we shall need the following notions: a quasi-
uniform frame (L, E) is called transitive (resp. totally bounded) if E has a base
consisting of transitive entourages (resp. finite entourages). For more information
on transitive quasi-uniformities and totally bounded quasi-uniformities we refer to
[11] and [10], respectively.

Concerning special types of maps between quasi-uniform frames, a frame ho-
momorphism h : (L, E) → (M,F) between quasi-uniform frames is called uniform
(resp. a surjection) if (h ⊕ h)(E) ∈ F for each E ∈ E , (resp. if it is onto and the
(h∗ ⊕ h∗)(F ), F ∈ F , are entourages generating E). Obviously, any surjection is a
uniform homomorphism.

2. The quasi-metric quasi-uniformity of the reals

We start by showing that the frame L(R) carries a natural quasi-uniformity
whose underlying biframe is precisely the biframe of reals, its quasi-metric quasi-
uniformity Q, generated by the entourages

Qn :=
∨{

(−, q)⊕ (p,−) | p, q ∈ Q, 0 < q − p <
1
n

}
(n ∈ N).

Remark 2.1. Note that

Qn =
〈 ⋃{

(−, q)⊕ (p,−) | p, q ∈ Q, 0 < q − p <
1
n

}〉

and, as can be easily proved using the fact that Q is dense in itself, ((r, s), (t, u))
belongs to

⋃
0<q−p< 1

n
(−, q)⊕ (p, −) if and only if s− t < 1

n . In the sequel we shall
denote this union by Q′

n (so Qn = 〈Q′n〉).
Lemma 2.2. Let p < q and pi < qi (i ∈ I). Then:

(a) st1((−, p), Qn) ≤ (−, q), for every natural n > 1
q−p .

(b) st2((q,−), Qn) ≤ (p,−), for every natural n > 1
q−p .

(c) st1(
∨

i∈I(pi, qi), Qn) = st1(
∨

i∈I(−, qi), Qn), for every n ∈ N.

(d) st2(
∨

i∈I(pi, qi), Qn) = st2(
∨

i∈I(pi,−), Qn), for every n ∈ N.
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Proof. (a). By (S2) and Remark 2.1 we need only to show that
∨
{(r, s) | ((r, s), (t, u)) ∈ Q′

n, (t, u) ∧ (−, p) 6= 0} ≤ (−, q).

So let ((r, s), (t, u)) ∈ Q′
n such that (t, u) ∧ (−, p) 6= 0. This means that s − t < 1

n
and t < p. Therefore, q − t > q − p > 1

n > s− t, which implies s < q.
(c). The inequality “≤” is obvious by (S1). The reverse inequality follows from the
fact that, for any ((r, s), (t, u)) ∈ Q′n satisfying (t, u) ∧∨

i∈I(−, qi) 6= 0, there exists
j ∈ I such that t < qj , and therefore ((r, s), (t, qj)), which belongs to Q′

n ⊆ Qn, is
such that (t, qj) ∧

∨
i∈I(pi, qi) ≥ (t, qj) ∧ (pj , qj) 6= 0.

Assertions (b) and (d) may be proved in a similar way to (a) and (c), respectively.
¤

Lemma 2.3. For each n ∈ N, we have:

(a) Qn is an entourage of L(R).

(b) Qn+1 ⊆ Qn.

(c) Q2n ◦Q2n ⊆ Qn.

Proof. (a). Since ((p, q), (p, q)) ∈ Qn whenever 0 < q − p < 1
n , it suffices to

check that
∨{(p, q) | 0 < q − p < 1

n} = 1. By (R2), any (r, s) is the join of some
(p1, q1), · · · , (pm, qm) where p1 = r < p2 < q1 < p3 < · · · < pm < qm−1 < qm = s
and 0 < qi − pi < 1

n . Thus, by (R4), 1 =
∨

r,s∈Q(r, s) =
∨

0<q−p< 1
n
(p, q).

(b). Trivial.
(c). By Lemma 1.1 (a), it suffices to check that Q′2n ◦ Q′2n ⊆ Qn. Let ((p1, q1),
(p2, q2)) and ((p2, q2), (p3, q3)) belong to Q′2n with p2 < q2. Then, by Remark
2.1, q1 − p2 < 1

2n and q2 − p3 < 1
2n . Therefore q1 − p2 + q2 − p3 < 1

n , which
implies that ((−, q1 − p2 + q2), (p3,−)) belongs to Q′n. But ((p1, q1), (p3, q3)) ≤
((−, q1 − p2 + q2), (p3,−)), since q2 − p2 > 0. Hence ((p1, q1), (p3, q3)) ∈ Q′n ⊆ Qn.
¤

By (a) and (b) of the above lemma, the Qn (n ∈ N) form a filter base of
entourages of L(R), which, by (c), satisfies the square refinement property. Let Q
be the corresponding filter.

Proposition 2.4. (L(R),Q) is a quasi-uniform frame whose underlying biframe is
the biframe of reals.

Proof. It remains to prove that (L(R),L1(Q),L2(Q)) is the biframe of reals.

By Lemma 2.2 (a), (−, p)
Q
/1 (−, q) whenever p < q, so, for each (−, q) ∈ Ll(R),

we have
(−, q) =

∨
p<q

(−, p) ≤
∨
{x ∈ L(R) | x Q

/1 (−, q)} ≤ (−, q),

which shows the inclusion Ll(R) ⊆ L1(Q). In order to show the reverse inclusion

consider x ∈ L1(Q). Then x =
∨{y ∈ L(R) | y

Q
/1 x}. But y =

∨
i∈I(pi, qi) for
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some pairs (pi, qi), pi < qi. Therefore, by Lemma 2.2(c), y ≤ ∨
i∈I(−, qi)

Q
/1 x, and

consequently, x ≤ ∨{z ∈ Ll(R) | z Q/1 x} ≤ x, which shows that x ∈ Ll(R).
The equality L2(Q) = Lu(R) may be shown analogously, using assertions (b)

and (d) of Lemma 2.2. ¤
Recall from [7] that a quasi-uniform frame (L, E) is complete if every dense

surjection (M,F) → (L, E) is an isomorphism. We end this section with the proof
that L(R) is complete in its quasi-metric quasi-uniformity.

Proposition 2.5. (L(R),Q) is complete.

Proof. Let h : (M, E) → (L(R),Q) be a dense surjection. Since h is dense, we show h
is an isomorphism by simply exhibiting a right inverse g for it. Let g(p, q) := h∗(p, q),
with h∗ the right adjoint of h. By the properties of h∗ and of dense surjections, this
turns the conditions (R1)-(R4) into identities in M (we omit the details, that are
straightforward) and therefore, it defines a frame homomorphism g : L(R) → M .
This gives us the right inverse for h, as hh∗ = id because h is onto. ¤

3. The semicontinuous quasi-uniformity of a frame

Let L be a frame. In the following, S will denote the collection of all upper
semicontinuous real functions on L.

By the isomorphism ∇L : L → ∇L, we may regard each f ∈ S as a frame
homomorphism f : Ll(R) → ∇L and then, since each element of ∇L is comple-
mented in CL with complement in ∆L, we have a map Lu(R) → ∆L given by
(p,−) 7→ ∨

q>p ¬f(−, q). This defines a lower semicontinuous real function g on CL
and f and g extend immediately to a biframe map hf : L(R) → CL defined by
hf (p, q) = f(−, q) ∧ g(p,−) ([8], Proposition 3.2). For each f ∈ S and each n ∈ N
let

Ef,n :=
∨

0<q−p< 1
n

hf (−, q)⊕ hf (p,−).

Lemma 3.1. For any f1, · · · , fk ∈ S, n1, · · · , nk ∈ N and θ ∈ CL, we have:

(a) st1(θ,
⋂k

i=1 Efi,ni) ∈ ∇L.

(b) st2(θ,
⋂k

i=1 Efi,ni) ∈ ∆L.

Proof. (a). By Lemma 1.1 (b) and property (S2), we have
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st1(θ,
k⋂

i=1

Efi,ni) = st1(θ,
k⋂

i=1

<E′
fi,ni

>) = st1(θ, <
k⋂

i=1

E′
fi,ni

>) = st1(θ,
k⋂

i=1

E′
fi,ni

)

=
∨
{α | (α, β) ∈

k⋂

i=1

E′
fi,ni

, β ∧ θ 6= 0},

where E′
fi,ni

denotes the union
⋃

0<q−p< 1
ni

(hfi
(−, q)⊕hfi

(p,−)). But, for each such

pairs (α, β), we have (α, β) ≤ hfi(−, qi)⊕hfi(pi,−) for some 0 < qi− pi < 1
ni

, thus

α ≤ ∧k
i=1 hfi

(−, qi) and
∧k

i=1 hfi
(pi,−) ∧ θ 6= 0; on the other hand, if pi and qi are

rationals such that 0 < qi − pi < 1
ni

and
∧k

i=1 hfi(pi,−) ∧ θ 6= 0 then

( k∧

i=1

hfi
(−, qi),

k∧

i=1

hfi
(pi,−)

)
∈

k⋂

i=1

E′
fi,ni

.

Hence st1(θ,
⋂k

i=1 Efi,ni) coincides with

∨
{

k∧

i=1

hfi(−, qi) | qi ∈ Q such that ∃ pi ∈ Q : 0 < qi−pi <
1
ni

,

k∧

i=1

hfi(pi,−)∧θ 6= 0},

which clearly belongs to ∇L.
(b). Similarly, st2(θ,

⋂k
i=1 Efi,ni) coincides with

∨
{

k∧

i=1

hfi(pi,−) | pi ∈ Q such that ∃ qi ∈ Q : 0 < qi−pi <
1
ni

,

k∧

i=1

hfi(−, qi)∧θ 6= 0}.

Since hfi(p,−) =
∨

q>p ¬hfi(−, q) ∈ ∆L, for each p ∈ Q, st2(θ,
⋂k

i=1 Efi,ni) also
belongs to ∆L. ¤

Further, for each upper characteristic function χu
∇x

(x ∈ L) and each n ∈ N, we
have:

Lemma 3.2.

(a) st1(∇x, Eχu
∇x

,n) = ∇x.

(b) st2(∆x, Eχu
∇x

,n) = ∆x.

Proof. The proof follows immediately from the definition of χu
∇x

and properties
(S2) and (S3). ¤

Proposition 3.3. {Ef,n | f ∈ S, n ∈ N} is a subbase for a quasi-uniformity ES on
CL, with underlying biframe (CL,∇L, ∆L).
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Proof. Since each Ef,n coincides with (hf ⊕ hf )(Qn), it follows immediately from
Lemma 2.3 that the Ef,n form a subbase of a filter ES of entourages satisfying the
square refinement property.

Let θ ∈ CL. Then θ =
∨

i∈I(∇xi ∧∆yi) for some xi, yi ∈ L. Lemma 3.2 implies

that ∇xi

ES
/1 ∇xi and ∆yi

ES
/2 ∆yi . Consequently, each ∇xi belongs to L1(ES) and

each ∆yi
belongs to L2(ES) and we may conclude that CL is generated by L1(ES)

and L2(ES), that is, (CL,L1(ES),L2(ES)) is a biframe.
Finally, the compatibility: ∇L ⊆ L1(ES) again by Lemma 3.2(a). The reverse

inclusion L1(ES) ⊆ ∇L follows immediately from Lemma 3.1(a), because for each

θ ∈ L1(ES), θ =
∨{α ∈ CL | α ES

/1 θ} and α
ES
/1 θ means that there exist f1, · · · , fk ∈

S and n1, · · · , nk ∈ N such that α ≤ st1(α,
⋂k

i=1 Efi,ni) ≤ θ.
Similarly, L2(ES) = ∆L, by Lemma 3.1(b) and 3.2(b). ¤
It is easy to see that ES is the coarsest quasi-uniformity E on CL for which each

biframe map h : L(R) → CL is a uniform homomorphism h : (L(R),Q) → (CL, E)
([2], Prop. 5.13). We call it the semicontinuous quasi-uniformity for L and denote
it by SC(L).

It is also clear from its proof that Proposition 3.3 may be generalized to any
collection C containing all upper characteristic functions.

Corollary 3.4. Let C be a collection of upper semicontinuous real functions f :
Ll(R) → ∇L, containing all upper characteristic functions χu

∇x
(x ∈ L). Then

{Ef,n | f ∈ C, n ∈ N}
is a subbase for a quasi-uniformity EC on CL, with underlying biframe (CL,∇L,∆L).

Proposition 3.3 and its Corollary 3.4 are the pointfree version of results from
[14].

Example 3.5. Recall from [3] that the Frith quasi-uniformity F of CL is the quasi-
uniformity with subbase {(∇x⊕1)∨(1⊕∆x) | x ∈ L}. This is the pointfree analogue
of the Pervin quasi-uniformity. For each upper characteristic function χu

∇x
,

Eχu
∇x

,n =
∨

0<q−p< 1
n

(χu
∇x

(−, q)⊕ χl
∆x

(p,−)) = (∇x ⊕ 1) ∨ (1⊕∆x).

Indeed: for every those p, q, χu
∇x

(−, q) = 1 implies χl
∆x

(p,−) ≤ ∆x and
χl

∆x
(p,−) = 1 implies χu

∇x
(−, q) ≤ ∇x; on the other hand, there exist clearly

p, q for which χu
∇x

(−, q) ⊕ χl
∆x

(p,−) = ∇x ⊕ 1 (p = −1
4n and q = 1

4n , for instance)
and there exist p, q for which χu

∇x
(−, q) ⊕ χl

∆x
(p,−) = 1 ⊕ ∆x (p = 1 − 1

4n and
q = 1 + 5

4n , for instance).
Thus, for C = {χu

∇x
| x ∈ L}, EC and the Frith quasi-uniformity F have a

common subbase. Hence EC = F .

Proposition 3.6. Let g : CL → CM be a biframe homomorphism. Then g is a
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uniform homomorphism (CL,SC(L)) → (CM,SC(M)).

Proof. Let Ef,n ∈ SC(L), for some upper semicontinuous real function f on L and
n ∈ N. Then, we have

(g ⊕ g)(Ef,n) = (g ⊕ g)
( ∨

0<q−p< 1
n

hf (−, q)⊕ hf (p,−)
)

=
( ∨

0<q−p< 1
n

ghf (−, q)⊕ ghf (p,−)
)
.

But, evidently, ghf is the biframe extension hg1f of the upper semicontinuous real
function g1f : L(R) → M (where g1 denotes the restriction of g to ∇L, regarded as
a frame homomorphism from L to M). Hence (g ⊕ g)(Ef,n) = Eg1f,n ∈ SC(M). ¤

We end this section by showing that SC(L) is transitive and that it can be
obtained by our general construction in [3]. This is the pointfree version of a
theorem of Fletcher and Lindgren [5].

Recall from [3] that a spectrum cover of L is a cover A := {an | n ∈ Z} of L such
that an ≤ an+1 for each n ∈ Z, and

∨
n∈Z∆an = 1 (which implies, in particular,

that
∧

n∈Z an = 0). As we proved in [3], the collection A of spectrum covers of L is
an example of a family of interior-preserving covers, for which the following general
procedure works. For each A ∈ A, let

RA :=
⋂

a∈A

(∇a ⊕ 1) ∨ (1⊕∆a)

and let EA be the filter of entourages of CL generated by {RA | A ∈ A}. Then EA
is a quasi-uniformity on CL satisfying L1(EA) = ∇L and L2(EA) = ∆L.

Here is a proof of the result announced in [3] that this quasi-uniformity is
precisely the semicontinuous quasi-uniformity.

Theorem 3.7. Let A be the collection of all spectrum covers of L. Then EA(L) =
SC(L).

Proof. It suffices to show that {RA | A ∈ A} and {Ef,n | f ∈ S, n ∈ N} are
equivalent subbases.

Let A := {an | n ∈ Z} ∈ A. For each p ∈ Q let n(p) be the largest integer
contained in p. Then, immediately, fA : Ll(R) → CL given by fA(−, p) = ∇an(p)

belongs to S. It is also easy to see that

EfA,1 =
∨

n∈Z
(∇an ⊕∆an−1) ⊆

⋂

n∈Z
((∇an ⊕ 1) ∨ (1⊕∆an−1)) = RA.

Let Ef,m ∈ SC(L). Then
∨

n∈Z ¬f(−, n
2m ) = 1. Therefore, considering, for

each n ∈ Z, the an ∈ L such that f(−, n
2m ) = ∇an we get a spectrum cover

A := {an | n ∈ Z} of L. Now it suffices to check that RA ⊆ Ef,m. So, let

(α, β) ∈ RA =
⋂

n∈Z

(
(f(−,

n

2m
)⊕ 1) ∪ (1⊕ ¬f(−,

n

2m
))

)
.
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This means that, for some partition Z1∪̇Z2 of Z, we have α ≤ ∧
n∈Z1

f(−, n
2m ) and

β ≤
∧

n∈Z2

¬f(−,
n

2m
) = ¬(

∨

n∈Z2

f(−,
n

2m
)) = ¬f(

∨

n∈Z2

(−,
n

2m
)).

Then, in order to prove that (α, β) ∈ Ef,m, it remains to show that
∧

n∈Z1
f(−, n

2m ) ≤
f(−, q) and ¬f(

∨
n∈Z2

(−, n
2m )) ≤ hf (p,−), for some p, q such that 0 < q − p < 1

m .
If Z2 has a greatest element n, n + 1 ∈ Z1 and

∧
n∈Z1

f(−, n
2m ) ≤ f(−, n+1

2m ).
Take q = n+1

2m and p = n
2m − ε for some rational ε ∈ (0, 1

2m ). Clearly, 0 < q− p < 1
m

and
¬f(

∨

n∈Z2

(−,
n

2m
)) = ¬f(−,

n

2m
) ≤ hf (p,−)

because
hf (p,−) ∨ f(−,

n

2m
) = hf ((p,−) ∨ (−,

n

2m
) = hf (1) = 1.

If Z2 has no greatest element, we have ¬f(
∨

n∈Z2
(−, n

2m )) = ¬f(1) = 0, which
implies β = 0. Then (α, β) ∈ Ef,m trivially. ¤

Corollary 3.8. SC(L) is a transitive quasi-uniformity.

Remark 3.9. It is clear that we can substitute the congruence biframe
(CL,∇L,∆L), in every result of this section, by a more general strictly zero-di-
mensional biframe (L,L1, L2) (the proofs could be effected in a perfect similar
way). For instance, if L1 is the part of L whose elements are all complemented with
complements in L2, Corollary 3.4 could be formulated in the following way:

Let C be a collection of upper semicontinuous real functions f : Ll(R) → L1,
containing all upper characteristic functions χu

x (x ∈ L1). Then {Ef,n | f ∈ C, n ∈
N} is a subbase for a quasi-uniformity on L, with underlying biframe (L,L1, L2).

4. Some consequences

We say that an upper semicontinuous real function f : Ll(R) → L is bounded
above if f(−, p) = 1 for some p ∈ Q. Since every upper characteristic function is
bounded above, the discussion in Example 3.5 immediately leads to the following
result:

Proposition 4.1. Let C be the collection of all bounded above upper semicontinuous
real functions on L. Then {Ef,n | f ∈ C, n ∈ N} is a subbase for F .

Note that the proof of the corresponding classical result (in [9], Theorem 2, or
[6], Proposition 2.10) is not so direct and simple as the proof above.

Recall that a continuous real function h is bounded [1] if h(p, q) = 1 for some
p, q ∈ Q.

Lemma 4.2. If (CL, E) is a totally bounded quasi-uniform frame then every uniform
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homomorphism h : (L(R),Q) → (CL, E) is bounded.

Proof. Let h : (L(R),Q) → (CL, E) be a uniform homomorphism. For each n ∈
N, (h ⊕ h)(Qn) ∈ E , so there exists a finite cover {α1, · · · , αk} of CL such that∨k

i=1(αi ⊕αi) is contained in (h⊕ h)(Qn). For each i ∈ {1, · · · , k}, ∨
p∈Q(h(−, p)∧

αi) = αi 6= 0, thus there exists pi ∈ Q such that h(−, pi) ∧ αi 6= 0. Consequently,
αi ≤ st1(h(−, pi), (h ⊕ h)(Qn)), which, using property (S4), implies that αi ≤
h(st1((−, pi), Qn)) ≤ h(−, qi) for every qi > pi. Hence 1 ≤ ∨k

i=1 h(−, qi) for every
qi > pi. Choose qi ∈ Q (i = 1, · · · , k) such that qi > pi and let q ∈ Q be the largest
of these qi. Immediately, h(−, q) = 1. Similarly, we may guarantee the existence of
p ∈ Q such that h(p,−) = 1. Then h(p, q) = h(p,−)∧h(−, q) = 1 and h is bounded.
¤

This allows us to get the pointfree counterpart of a theorem of Hunsaker and
Lindgren [9]:

Theorem 4.3. Let (CL, E) be a totally bounded quasi-uniform frame. Then
there exists a collection C of bounded above upper semicontinuous real functions
f : Ll(R) → L such that {Ef,n | f ∈ C, n ∈ N} is a subbase for E.
Proof. Let (CL, E) be a totally bounded quasi-uniform frame. Every uniform ho-
momorphism h : (L(R),Q) → (CL, E), which is bounded by Lemma 4.2, restricts
to a bounded above upper semicontinuous fh : Ll(R) → ∇L ∼= L. Let C be the
collection of every such maps. Since C contains all upper characteristic functions
χu
∇x

(x ∈ L), by Corollary 3.4 {Ef,n | f ∈ C, n ∈ N} is a subbase for a quasi-
uniformity EC on CL. Evidently, Efh,n = (h ⊕ h)(Qn) ∈ E , because h is uniform,
thus {Ef,n | f ∈ C, n ∈ N} is a subbase for E . ¤

Again, by putting an arbitrary strictly zero-dimensional biframe in the place of
(CL,∇L, ∆L), we could get, similarly, the following:

Let (L, E) be a totally bounded quasi-uniform frame, whose underlying biframe
(L,L1(E), L2(E)) is strictly zero-dimensional. Then there exists a collection C of
bounded above upper semicontinuous real functions f : Ll(R) → L1(E) such that
{Ef,n | f ∈ C, n ∈ N} is a subbase for E.

References

[1] B. Banaschewski, The real numbers in pointfree topology, Textos de Matemática,
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