Photochromism of Phytochromes and Cph1 Requires Critical Amino Acids and Secondary Structure in the N-Terminal Domain

  • Seo Hak-Soo (Department of Plant Science, Seoul National University) ;
  • Bhoo Seong-Hee (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University)
  • Published : 2006.09.01

Abstract

The light perception and phototransformation of phytochromes are the first process of the phytochrome-mediated light signal transduction. The chromophore ligation and its photochromism of various site-specific and deletion mutants of pea phytochrome A and bacterial phytochrome-like protein (Cph1) were analyzed in vitro. Serial truncation mutants from the N-terminus and C-terminus indicated that the minimal N-terminal domain for the chromophore ligation spans from the residue 78 to 399 of pea phytochrome A. Site-specific mutants indicated that several residues are critical for the chromophore ligation and/or photochromism. Histidine-324 appears to serve as an anchimeric residue for photochromism through its H-bonding function. Isoleucine-80 and arginine-383 playa critical role for the chromophore ligation and photochromism. Arginine-383 is presumably involved in the stabilization of the Pfr form of pea phytochrome A. Apparently, the amphiphilic ${\alpha}$-helix centered around the residue-391 is in the chromophore pocket and critical for the chromophore ligation.

Keywords

References

  1. Abe, H., H. Handa, Y. Hogi, and T. Fukazawa. 1991. Efficient usage of a galactose-inducible expression vector for the production of heterologous protein in yeast. Agric. Biol. Chem. 52: 2035-2041
  2. Berkelman, T. R. and J. C. Lagarias. 1985. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal. Biochem. 156: 194-201 https://doi.org/10.1016/0003-2697(86)90173-9
  3. Bhoo, S. H., T. Hirano, H.-Y. Jeong, J.-G. Lee, M. Furuya, and P.-S. Song. 1997. Phytochrome photochromism probed by site-directed mutations and chromophore esterification. J. Am. Chem. Soc. 119: 11717-11718 https://doi.org/10.1021/ja972875s
  4. Borde, D. and P. Argos. 1991. Suggestion for 'Safe' residue substitutions in site-directed mutagenesis. J. Mol. Biol. 217: 721-729 https://doi.org/10.1016/0022-2836(91)90528-E
  5. Braslavsky, S. E. 1984. The photophysics and photochemistry of the plant photosensor-pigment phytochrome. Pure Appl. Chem. 56: 1153-1165 https://doi.org/10.1351/pac198456091153
  6. Braslavsky, S. E., D. Schneider, K. Heihoff, S. Nonell, P. F. Aramendia, and K. Schaffher. 1991. Phytochrome models. II. Photophysics and photochemistry of phycocyanobilin dimethyl ester J. Am. Chem. Soc. 113: 7322-7334 https://doi.org/10.1021/ja00019a033
  7. Cherry, J. R., D. Hondred, J. M. Walker, and R. D. Vierstra. 1992. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc. Natl. Acad. Sci. USA 89: 991-999
  8. Cherry, J. R., D. Hondred, J. M. Walker, J. M. Keller, H. Hershey, and R. D. Vierstra. 1993. Carboxyl-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell 5: 565-575 https://doi.org/10.1105/tpc.5.5.565
  9. Cornejo, J., S. I. Beale, M. J. Terry, and J. C. Lagarias. 1992. Phytochrome assembly. The structure and biological activity of 2(R), 3(E)-phytochromobilin derived from phycobiliproteins. J. Biol. Chem. 267: 14790-14798
  10. Crofts, A. R. 1987-1992. SEQANAL Package, Univ. of Illinois, Available from the Biotechnology Center, Univ. of Illinois, 901 S. Mathews, Urbana, IL 61801
  11. Deforce, L., M. Furuya, and P.-S. Song. 1993. Mutational analysis of the pea phytochrome A chromophore pocket: Chromophore assembly with apophytochrome A and photoreversibility. Biochemistry 32: 14165-14172 https://doi.org/10.1021/bi00214a014
  12. Deforce, L., K. Tomizawa, N. Ito, D. Farrens, P.-S. Song, and M. Furuya. 1991. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc. Natl. Acad. Sci. USA 88: 10392-10396
  13. Farrens, D. L., R. E. Holt, B. N. Rospendowski, P.-S. Song, and T. M. Cotton. 1989. Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 2. Phytochromes and phycocyanin chromophores. J. Am. Chem. Soc. 111: 9162-9169 https://doi.org/10.1021/ja00208a004
  14. Fodor, S. P. A., J. C. Lagarias, and R. A. Mathies. 1990. Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Biochemistry 29: 11141-11146 https://doi.org/10.1021/bi00502a018
  15. Furuya, M. and P.-S. Song. 1994. Assembly and properties of holophytochrome, pp. 105-140. In Kendrick, R. E. and G H. M. Kronenberg (eds.). Photomorphogenesis in Plants, 2nd Ed. Kluwer, Dordrecht, The Netherlands
  16. Hughes, J., T. Lamparter, F. Mittmann, E. Hartmann, W. Gartner, A. Wilde, and T. Borner. 1997. A prokaryotic phytochrome. Nature 386: 663 https://doi.org/10.1038/386663a0
  17. Kaneko,T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, and S. Sasamoto. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synecocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109-136 https://doi.org/10.1093/dnares/3.3.109
  18. Kang, S.-G., S.-K. Kang, D.-Y. Lee, Y.-H. Park, W.-S. Hwang, and H.-S. Yoo. 2004. Cloning, sequencing and expression of cDNA encoding bovine prion protein. J. Microbiol. Biotechnol 14: 417-421
  19. Kim, S.-Y. and J.-Y. Cho. 2005. A modified PCR-directed gene replacements method using ${\lambda}$-red recombination functions mE. coli. J. Microbiol. Biotechnol. 15: 1346-1354
  20. Kim, J.-H., H.-J. Kang, E.-S. Kim, J.-H. Kim, and Y.-M. Koo. 2004. One-step purification of poly-His tagged Penicillin G acylase expressed in E. coll J. Microbiol. Biotechnol. 14: 231-236
  21. Lagarias, J. C. and D. M. Lagarias. 1989. Self-assembly of synthetic phytochrome holoprotein in vitro. Proc. Natl. Acad. Sci. USA 86: 5778-5780
  22. Li, L. and J. C. Lagarias. 1992. Phytochrome assembly: Defining chromophore structure requirements for covalent attachment and photoreversibility. J. Biol. Chem. 267: 19204-19210
  23. Manabe, K. and M. Nakazawa. 1997. The structure and function of phytochrome A: The roles of the entire molecule and of its various parts. J. Plant Res. 110: 109-122 https://doi.org/10.1007/BF02506850
  24. Parks, B. M. and P. H. Quail. 1991. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3: 1177-1186 https://doi.org/10.1105/tpc.3.11.1177
  25. Rudiger, W., F. Thummler, E. Cmiel, and S. Schneider. 1983. Chromophore structure of the physiologically active form (Pfr) of phytochrome. Proc. Natl. Acad. Sci. USA 80: 6244-6248
  26. Tomizawa, K., N. Ito, Y. Komeda, T. Q. P. Uyeda, K. Takio, and M. Furuya. 1991. Characterization and intracellular distribution of pea phytochrome I polypeptides expressed in E. coli. Plant Cell Physiol. 32: 95-102
  27. Wagner, J. R., J. S. Brunzelle, K..T. Forest, and R. D. Vierstra. 2005. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438:325-331 https://doi.org/10.1038/nature04118
  28. Yeh, K.-C, S.-H. Wu, J. T. Murphy, and J. C. Lagarias. 1997. A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505-1508 https://doi.org/10.1126/science.277.5331.1505