Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111)

n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성

  • Kim Hyun-Deok (Department of Electronic Engineering, Jinju National University) ;
  • Park Kyeong-Won (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Lee Jong-Duk (Department of Physics and RINS, Gyeong National University)
  • Published : 2006.09.01

Abstract

Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

펄스 전기증착법에 의해 단결정 Fe 박막을 n-Si(111) 기판위에 직접 성장시켰다. CV 분석 을 통해 $Fe^{2+}n-Si(111)$ 계면은 쇼트키 장벽 형성에 따른 다이오드 특성을 가진다는 사실을 알 수 있었다. 또한 인가 전압에 따른 전기용량의 변화를 보여주는 Mott-Schottky chottky(MS) 관계식을 이용하여 전해질 내에서 n-Si(111) 기판의 flat-band potential(EFB)을 조사하였으며, 0.1M $FeCl_2$ 전해질 내에서 EFB와 산화-환원 전위는 각각 -0.526V 과 -0.316V 임을 알 수 있었다. Fe/n-Si(111) 계면반응 시, Fe 증착 초기 단계에서의 핵 형성과 성장 운동학은 과도전류 특성을 이용하여 조사하였으며, 과도전류 특성을 통해 Fe 박막의 성장모드는 "instantaneous nucleation and 3-dimensional diffusion limited growth"임을 알 수 있었다. 주파수가 300Hz, 최대 전압이 1.4V인 펄스 전압을 이용하여 n-Si(111) 기판위에 Fe를 직접 전기 증착 시켰으며, 형 성 된 Fe 박막은 단결정 ${\alpha}-Fe$로 Si 기판위에 ${\alpha}-Fe(110)/Si(111)$의 격자 정합성을 가지고 성장하였음을 XRD 분석을 통해 확인하였다.

Keywords

References

  1. P. Bertoncini, D. Berling, P. Wetzel, A. Mehdaoui, B. Loegel, G. Gewinner, C. Ulhaq-Bouillet and V. Pierron-Bohnes, 'Epitaxial magnetic Fe layers grown on Si(001) by means of a template method', Surf. Sci. 454/456, 755 (2000) https://doi.org/10.1016/S0039-6028(00)00180-1
  2. J. Alvarez, J. J. Hinarejos, E. G. Michel and R. Miranda, 'Determination of the Fe/Si(111) phase diagram by means of photoelectron spectroscopies', Surf. Sci. 287/288, 490 (1993) https://doi.org/10.1016/0039-6028(93)90828-8
  3. J. M. Gallego, J. M. Garcia, J. E. Ortega, A. L. Vazquez de Parga, J. de la Figuera, C. Ocal and R. Miranda, 'Growth of epitaxial iron disilicide on Si(100)', Surf. Sci. 269/270, 1016 (1992) https://doi.org/10.1016/0039-6028(92)91386-P
  4. J. Chrost, J. J. Hinarejos, P. Segovia, E. G. Michel and R. Miranda, 'Iron silicides grown on Si(100): metastable and stable phases', Surf. Sci. 371, 297 (1997) https://doi.org/10.1016/S0039-6028(96)01013-8
  5. A. Mascaraque, J. Avila, C. Teodorescu and M. C. Asensio, 'Atomic structure of the reactive Fe/Si(111)-$7{\times}7$ interface', Phys. Rev. B 55, R7315 (1997) https://doi.org/10.1103/PhysRevB.55.R7315
  6. M. De Crescenzi, G. Gaggiotti, N. Motta, F. Patella and A Balzarotti, 'Bremsstrahlung-isochromat-spectroscopy and x-ray-photoelectron-spectroscopy investigation of the electronic structure of ${\beta}-FeSi_{2}$ and the Fe/Si(111) interface', Phys. Rev. B 42, 5871 (1990) https://doi.org/10.1103/PhysRevB.42.5871
  7. K. H. Kim, J. D. Lee and J.-S. Kang, 'Fe3Si Phase Formation at Fe/Si(111)- $7{\times}7$ Interface at Room Temperature', J. Jpn. Appl. Phys. 37, 4949 (1998) https://doi.org/10.1143/JJAP.37.4949
  8. G. Oskam and P. C. Searson, 'Electrochemical nucleation and growth of gold on silicon (100) surfaces', Surf. Sci. 446, 103 (2000) https://doi.org/10.1016/S0039-6028(99)01113-9
  9. A. P. O'Keeffe, O. I. Kasyutich, W. Schwarzacher, L. S. de Oliveira, and A. A. Pasa, 'Giant magnetoresistance in multilayers electrodeposited on n-Si', Appl. Phys. Lett. 73, 1002 (1998) https://doi.org/10.1063/1.122066
  10. F. Y. Yang, Kai Liu, Kimin Hong, D. H. Reich, P. C. Searson, and C. L. Chen, 'Large Magnetoresistance of Electrodeposited Single-Crystal Bismuth Thin Films', Science, 284, 1335 (1999) https://doi.org/10.1126/science.284.5418.1335
  11. M. Cerisier, K. Attenborough, J. -P. Celis, and C. Van. Haesendonck, 'Structure and magnetic properties of electrodeposited Co films onto Si(100)', Appl. Surf. Sci. 166, 154 (2000) https://doi.org/10.1016/S0169-4332(00)00398-6
  12. J. C. Ziegler, A. Reitzle, O. Bunk, J. Zegenhagen, and D. M. Kolb, 'Metal deposition on n-Si(111): H electrodes', Electrochim. Acta 45, 4599 (2000) https://doi.org/10.1016/S0013-4686(00)00611-3
  13. N. H. Phan, M. Schwartz, and K. Nobe, 'Pulsed deposition of Fe-Ni-Co. alloys', Electrochim. Acta 39, 449 (1994) https://doi.org/10.1016/0013-4686(94)80085-5
  14. K. H. Kim, J. D. Lee, J. J. Lee, C. K. Choi, J. Y. Lee, and Y. P. Lee, 'The Growth and the Electrical Properties of Epitaxial $CrSi_{2}$ Films Prepared on Si(111) Substrates', J. Korean Phys. Soc. 33, 71 (1998)
  15. Rudiger Memming, Semiconductor Electrochemistry, (WILEY-VCH, 2001)
  16. G. Gunawardena, G. Hills, T. Montenegro, and B. Scharifker, 'Electrochemical Nucleation: Part1. General Considerations', J. Electroanal. Chem. 138, 225 (1982) https://doi.org/10.1016/0022-0728(82)85080-8
  17. B. Scharifker, and G. Hills, 'Theoretical and experimental studies of multiple nucleation', Electrochim. Acta 28, 879 (1983) https://doi.org/10.1016/0013-4686(83)85163-9
  18. S. R. Morrison, Electrochemistry at Semiconductor and Oxidezed Metal Electrodes, Plenum, New York, (1980)
  19. S. M. Sze, The Physics of Semiconductor Devices, Wiley, New York, (1981)
  20. A. M. Fajardo, and N. S. Lewis, 'Rate Constants for Charge Transfer Across Semiconductor-Liquid Interfaces', Science 274, 969 (1996) https://doi.org/10.1126/science.274.5289.969
  21. R. Krumm, B. Guel, C. Schmitz and G. Staokov, Electrochim. Acta, 45, 3255 (2000) https://doi.org/10.1016/S0013-4686(00)00418-7
  22. Y. S. Park, K. H. Kim, J. J. Lee, and T. W. Kang, 'Structural and Optical Properties of $Cd_{2}GeSe_{4}$ Thin Films Grown by Thermal Evaporation', J. Korean Phys. Soc. 44. 875 (2004)
  23. Nam-Oh Kim, Hyung-Gon Kim and Woo-Sun Lee, 'Optical and Electrical Properties of ${\beta}$-FeSi2 Single Crystals', J. Korean Phys. Soc. 38, 803 (2001)
  24. S. Yoshimura, S. Yoshihara, T. Shirakashi, and E. Sato, 'Preferred Orientation and Morphology of Electrodeposited Iron From Iron(II) Chloride Solution', Electrochim. Acta, 39, 589 (1994) https://doi.org/10.1016/0013-4686(94)80105-3