ON THE ADMISSIBILITY OF HIERARCHICAL BAYES ESTIMATORS

  • Kim Byung-Hwee (Department of Mathematics, Hanyang University) ;
  • Chang In-Hong (Department of Computer Science and Statistics, Chosun University)
  • 발행 : 2006.09.01

초록

In the problem of estimating the error variance in the balanced fixed- effects one-way analysis of variance (ANOVA) model, Ghosh (1994) proposed hierarchical Bayes estimators and raised a conjecture for which all of his hierarchical Bayes estimators are admissible. In this paper we prove this conjecture is true by representing one-way ANOVA model to the distributional form of a multiparameter exponential family.

키워드

참고문헌

  1. BERGER, J. O. AND BERNARDO, J. M. (1992). 'On the development of reference priors', Bayesian Statistics 4 (J. M. Bernardo, et al. eds.), 35-60, Oxford University Press, New York
  2. Box, G. E. P. AND TIAO, G. C. (1973). Bayesian Inference in Statistical Analysis, Addison-Wesley, Massachusetts
  3. BREWSTER, J. F. AND ZIDEK, J. V. (1974). 'Improving on equivariant estimators', The Annals of Statistics, 2, 21-38 https://doi.org/10.1214/aos/1176342610
  4. BROWN, L. (1968). 'Inadmissiblity of the usual estimators of scale parameters in problems with unknown location and scale parameters', Annals of Mathematical Statistics, 39, 29-48 https://doi.org/10.1214/aoms/1177698503
  5. DATTA, G. S. AND GHOSH, M. (1995). 'Hierarchical Bayes estimators of the error variance in one-way ANOVA models', Journal of Statistical Planning and Inference, 45, 399-411 https://doi.org/10.1016/0378-3758(93)00083-T
  6. DONG, K. H. AND KIM, B. H. (1993). 'Sufficient conditions for the admissibility of estimators in the multiparameter exponential family', Journal of the Korean Statistical Society, 22, 55-69
  7. GHOSH, M. (1994). 'On some Bayesian solutions of the Neyman-Scott problem', In Statistical Decision Theory and Related Topics V (S. S. Gupta and J. O. Berger. eds.), 267-276, Springer, New York
  8. MAATTA, J. M AND CASELLA, G. (1990). 'Developments in decision theoretic variance estimation (with discussion)', Statistical Science, 5, 90-120 https://doi.org/10.1214/ss/1177012263
  9. PORTNOY, S. (1971). 'Formal Bayes estimation with application to a random effects model', The Annals of Mathematical Statistics, 42, 1379-1402 https://doi.org/10.1214/aoms/1177693250
  10. PROSKIN, H. M. (1985). 'An admissibility theorem with applications to the estimation of the variance of the normal distribution', Ph. D. Dissertation, Department of Statistics, Rutgers University, New Jersey
  11. STEIN, C. (1964). 'Inadmissibility of the usual estimator of the variance of a normal distribution with unknown mean', Annals of the Institute of Statistical Mathematics, 16, 155-160 https://doi.org/10.1007/BF02868569
  12. STRAWDERMAN, W. E. (1974). 'Minimax estimation of powers of the variance of a normal population under squared error loss', The Annal of Statistics, 2, 190-198 https://doi.org/10.1214/aos/1176342625