OBJECTIVE BAYESIAN APPROACH TO STEP STRESS ACCELERATED LIFE TESTS

  • Kim Dal-Ho (Department of Statistics, Kyungpook National University) ;
  • Lee Woo-Dong (Department of Asset Management, Daegu Haany University) ;
  • Kang Sang-Gil (Department of Applied Statistics, Sangji University)
  • Published : 2006.09.01

Abstract

This paper considers noninformative priors for the scale parameter of exponential distribution when the data are collected in step stress accelerated life tests. We find the Jeffreys' and reference priors for this model and show that the reference prior satisfies first order matching criterion. Also, we show that there exists no second order matching prior in this problem. Some simulation results are given and we perform Bayesian analysis for proposed priors using some data.

Keywords

References

  1. BERGER, J. O. AND BERNARDO, J. M. (1989). 'Estimating a product of means: Bayesian analysis with reference priors', Journal of the American Statistical Association, 84, 200-207 https://doi.org/10.2307/2289864
  2. BERGER, J. O. AND BERNARDO, J. M. (1992). 'On the development of reference priors', Bayesian Statistics 4 (J. M. Bernardo, et al. eds.), 35-60, Oxford University Press, New York
  3. BERNARDO, J. M. (1979). 'Reference posterior distributions for Bayesian inference (with discussion)', Journal of the Royal Statistical Society, Ser. B, 41, 113-147
  4. Cox, D. R. AND REID, N. (1987). 'Parameter orthogonality and approximate conditional inference (with discussion)', Journal of the Royal Statistical Society, Ser. B, 49, 1-39
  5. DATTA, G. S. AND GHOSH, J. K. (1995a). 'On priors providing frequentist validity for Bayesian Inference', Biometrika, 82, 37-45 https://doi.org/10.1093/biomet/82.1.37
  6. DATTA, G. S. AND GHOSH, M. (1995b). 'Some remarks on noninformative priors', Journal of the American Statistical Association, 90, 1357-1363 https://doi.org/10.2307/2291526
  7. DATTA, G. S. AND GHOSH, M.(1996). 'On the invariance of noninformative priors', The Annal of Statistics, 24, 141-159 https://doi.org/10.1214/aos/1033066203
  8. DEGROOT, M. H. AND GOEL, P. K. (1979). 'Bayesian estimation and optimal designs in partially accelerated life-testing', Naval Research Logistics Quarterly, 26, 223-235 https://doi.org/10.1002/nav.3800260204
  9. JEFFREYS, H. (1961). Theory of probability, Oxford University Press, Oxford
  10. MUKERJEE, R. AND DEY, D. K. (1993). 'Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics', Biometrika, 80, 499-505 https://doi.org/10.1093/biomet/80.3.499
  11. MUKERJEE, R. AND GHOSH, M. (1997). 'Second-order probability matching priors', Biometrika. 84. 970-975
  12. PATHAK, P. K., SINGH, A. K. AND ZIMMER, W. J. (1987). 'Empirical Bayesian estimation of mean life from an accelerated life test', Journal of Statistical Planning and Inference, 16, 353-363 https://doi.org/10.1016/0378-3758(87)90088-7
  13. PEERS, H. W. (1965). 'On confidence points and Bayesian probability points in the case of several parameters', Journal of the Royal Statistical Society, Ser. B, 27, 9-16
  14. STEIN, C. M. (1985). 'On the coverage probability of confidence sets based on a prior distribution', Sequential methods in statistics, 485-514, Banach Center, Warsaw
  15. TIBSHIRANI, R. (1989). 'Noninformative priors for one parameter of many', Biometrika, 76, 604-608 https://doi.org/10.1093/biomet/76.3.604
  16. WELCH, B. L. AND PEERS, H. W. (1963). 'On formulae for confidence points based on integrals of weighted likelihoods', Journal of the Royal Statistical Society, Ser. B, 25, 318-329