Construction of Optimal Concatenated Zigzag Codes Using Density Evolution with a Gaussian Approximation

  • 홍송남 (삼성전자 통신연구소) ;
  • 신동준 (한양대학교 전자통신컴퓨터 공학부)
  • 발행 : 2006.09.01

초록

Capacity-approaching codes using iterative decoding have been the main subject of research activities during past decade. Especially, LDPC codes show the best asymptotic performance and density evolution has been used as a powerful technique to analyze and design good LDPC codes. In this paper, we apply density evolution with a Gaussian approximation to the concatenated zigzag (CZZ) codes by considering both flooding and two-way schedulings. Based on this density evolution analysis, the threshold values are computed for various CZZ codes and the optimal structure of CZZ codes for various code rates are obtained. Also, simulation results are provided to conform the analytical results.

키워드

참고문헌

  1. R. G. Gallager, 'Low-density parity-check codes,' IRE Trans. Inform. Theory, pp. 21-28, Jan. 1962
  2. D. J. C. MacKay and R M. Neal, 'Near Shannon limit performance of low desnsity parity check codes,' IEE Electon. Lett., pp. 1645-1646, Aug. 1996
  3. T. J. Richardson, A. Shokrollahi, and R. L. Urbanke, 'Design of capacity-approaching irregular low-density parity-check codes,' IEEE Trans. Inform. Theory, pp. 619-637, Feb. 2001
  4. T. J. Richardson and R. L. Urbanke, 'Efficient encoding of low-density parity-check codes,' IEEE Trans. Inform. Theory, pp. 638 -656, Feb. 2001
  5. H. Jin, A. Khandekar, and R. McEliece, 'Irregular repeat-accumulate codes,' pp. 1-8 in Proc. 2nd International Symposium on Turbo Codes and Related Topics, Brest, France, Sept. 2000
  6. L. Ping and K. Y. Wu, 'Concatenated tree codes: a low-complexity, high-performance approach,' IEEE Trans. Inform. Theory, pp. 791-799, Feb. 2001
  7. L. Ping, X. L. Huang, and N. Phamdo, 'Zigzag codes and concatenated zigzag codes,' IEEE Trans. Inform. Theory, pp. 800-807, Feb. 2001
  8. F. R. Kschischang and B. J. Frey, 'Iterative decoding of compound codes by probability propagation in graphical models,' IEEE J. Select. Areas Commun., pp. 219-230, Feb. 1998
  9. T. J. Richardson and R. L. Urbanke, 'The capacity of low-density parity-check codes under message-passing decoding,' IEEE Trans. Inform. Theory, pp. 599-618, Feb. 2001
  10. S. Y. Chung, T. J. Richardson, and R. L. Urbanke, 'Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,' IEEE Trans. Inform. Theory, pp. 657-670, Feb. 2001