Effect of Nitrogen Fertilization levels on Growth and Isoflavone Content in Soybean

질소시비수준이 콩의 생육 및 isoflavone 함량에 미치는 영향

  • Published : 2006.09.01

Abstract

The nitrogen fertilization effect on growth characteristics and isoflavone content was investigated in this study, and isoflavone analyzed by HPLC with photodiode array (PDA) detector and reverse-phase $C_{18}$ column. Fertilization levels were no-fertilization, no nitrogen, 50% decreased in nitrogen, standard and 50% increased in nitrogen fertilization. The 50% increased nitrogen fertilization showed the highest growth characteristics then other fertilization level and the number of pod and seed showed maximum value 31.9 and 72.3, respectively, and seed yield was 2,460 kg/ha. During growth stages, isoflavone content in leaf, stem and root of soybean plants decreased to R5 stage then increased to R7 stage. Isoflavone content according to various nitrogen fertilization condition, in case of none fertilization, no nitrogen, 50% decreased nitrogen fertilization showed higher value than those of standard and 50% increased nitrogen fertilization levels. Aglycon content among the isoflavone isomers showed much higher in plant than in seed. The highest isoflavone content was found in the root of soybean plant parts. Isoflavone content of seed was higher in none, no nitrogen, 50% decreased nitrogen than those of standard and 50% increased nitrogen fertilization.

본 연구에서는 질소 시비수준이 생육시기별 식물체 및 종실에서 isoflavone함량에 미치는 영향을 구명하기 위하여 고속액체크로마토그래피(HPLC)를 이용하여 생육시기에 따른 식물체에서 isoflavone을 분석한 결과를 요약하면 다음과 같다. 1. 질소시비 수준에 따른 일반생육은 50%증비구가 다른 처리에 비하여 가장 좋았는데, 엽수 및 엽면적이 표준비의 72.7개, $619.7cm^{2}$에 비하여 81.9개와 $723cm^{2}$으로 증가하였다. 2. 수량 관련 형질 중에서 협수 및 종실수는 50%증비에서 개체당 31.9개와 72.3개로 가장 많았으며, 수량도 246 kg/10a로 다른 시비구에 비하여 가장 높았다. 무비와 N무비구에서는 협수가 24.9개/개체와 25.1개/개체, 립수는 60.3개/개체과 51.1개/개체, 수량은 181.0 kg/10a과 178.0 kg/10a으로 낮았다. 3. 생육시기에 따른 isoflavone 함량은 잎, 줄기, 뿌리에서 개화이후부터 립비대기(R5)까지는 감소하다가 이후 수확기(R7)까지 다시 증가하였다. 4. 식물체 부위별 isoflavone 함량은 뿌리에서 가장 높은 값을 나타내었다. 5. 시비수준에 따른 종실의 isoflavone 함량은 무비, N무비 및 50% 감비의 경우가 표준비나 증비보다 다소 높은 함량을 나타내었다.

Keywords

References

  1. Anlin, D., S. Junming, C. Ruzheng, and D. Huiru. 1995. The preliminary analysis of isoflavone content in chinease cultivars. Soybean Genetics Newsletter
  2. Arthur, C. E. and F. K. William. 1983. Effect of environment and variety on composition. J. Agric. Food Chem. 31 : 394-396 https://doi.org/10.1021/jf00116a052
  3. Barnes, S. and H. C. Blair. 1996. Genistein for use in inhibiting osteroclasts. Us. patent. 550 : 6211
  4. Choi, J. S., T. W. Kwon, and J. S. Kim. 1996. Isoflavone contents in some varieties of soybean. Foods and Biotechnology. 5(2) : 167-169
  5. Choi, Y. B. and H. S. Sohn. 1998. Isoflavone content in korean fermented and unfermented soybean foods. Korean J. Food Sci. Technol. 30 : 745-750
  6. 최희돈, 김성수, 홍희도, 이진열 2000. 나물콩 품종별 콩나물의 물리화학적 및 관능적 특성 비교. 한국농화학회지 43 : 207-212
  7. Harrison, G. G. and S. Cho. 1999. Chaging global patterns and implications of soybean consumption. 8th asian congress of nutrition, Aug.29-Sep.2. Seoul, Korea
  8. Kim, S. R. and S. D. Kim. 1996. Studies on soybean isoflavones : I. content and distribution of isoflavones in Korea soybean cultivars. J. Agric. Sci. 38 : 155-165
  9. 김성란, 홍희도, 김성수. 1999. 콩 및 콩 제품 중의 isoflavone 함량과 특성, 한국콩연구회지. 16 : 35-46
  10. Kodou, S., Y. Fleury, D. Welti, U. T. Magnolato, and K. Kitamura. 1991. Malonyl isoflavone glucosides in soybean seeds. Agric. Biol, Chem. 55 : 2227-2233 https://doi.org/10.1271/bbb1961.55.2227
  11. Kosslak, R. M., R. Bookland, J. Barkei, H. E. Paaren, and E. R. Appelbaum, 1987. Induction of Bradirhizobium japonicum common nod genes by isoflavones isolated from gkycine max. Proc. Natl. Acad. Sci. 84 : 7428-7432
  12. Levitzki, A. and A. Gazit. 1995. Tyrosine kinase inhibition: An approach to drug development. Science 267 : 1782-1787 https://doi.org/10.1126/science.7892601
  13. Morris, P. F., M. E. Savard, and E. W. B. Ward. 1991, Identification and accumulation of isoflavonoids and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to phytophtora megasperma f. sp. glycinea. Physiol. Molecular Plant Phathol. 39(3) : 229- 244 https://doi.org/10.1016/0885-5765(91)90006-4
  14. Murphy, P. A. 1982. Phytoestrogen content of processed soybean products. J. Food. Tech. 36, 60-64
  15. 이수경, 이민준, 윤선, 권재중.2000. 한국 중년여성의 대두식품을 통한 이소플라본 섭취 수준 조사. J. Korean Soc. Food Sci. Nutr. 29: 948-956
  16. 소은희, 구장환, 박금룡, 이영호. 2001. 콩 품종의 isoflavone 함량과 항산화 활성. 한국작물학회지 33 : 35-39
  17. Record, I. R., E. Iver, and J. K. Mcinerny. 1995. The antioxidant activity of genistein in vitro. Nutr. Biochemistry 6 : 481-485 https://doi.org/10.1016/0955-2863(95)00076-C
  18. Richard, A. D. and L. P. Nancy. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell 7 : 1085-1097 https://doi.org/10.2307/3870059
  19. Tony, J. V., Y. Xinhua, W. B. Tom, C. J. Chung-Ja, I. R. Jackson, and M. B. Sylvie. 2002. Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max(L) Merr.]. J Aggri. and Food Chem. 50 : 3501-3506 https://doi.org/10.1021/jf0200671
  20. Walter, E. D. 1941. Genistein (an isoflavone glycoside) and its aglycone, genistein from soya beans. J. AM. Chem. Soc. 65 : 3273-3275
  21. Yamashita, Y., S. Kawada, and H. Nakano. 1991. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids genistein and orobol. FEBS letter 288 : 46 https://doi.org/10.1016/0014-5793(91)81000-X